期刊文献+

The Bessel Numbers and Bessel Matrices 被引量:1

The Bessel Numbers and Bessel Matrices
下载PDF
导出
摘要 In this paper, using exponential Riordan arrays, we investigate the Bessel numbers and Bessel matrices. By exploring links between the Bessel matrices, the Stirling matrices and the degenerate Stirling matrices, we show that the Bessel numbers are special case of the degenerate Stirling numbers, and derive explicit formulas for the Bessel numbers in terms of the Stirling numbers and binomial coefficients. In this paper, using exponential Riordan arrays, we investigate the Bessel numbers and Bessel matrices. By exploring links between the Bessel matrices, the Stirling matrices and the degenerate Stirling matrices, we show that the Bessel numbers are special case of the degenerate Stirling numbers, and derive explicit formulas for the Bessel numbers in terms of the Stirling numbers and binomial coefficients.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2011年第4期627-636,共10页 数学研究与评论(英文版)
基金 Supported by the Natural Science Foundation of Gansu Province (Grant No.1010RJZA049)
关键词 Bessel number of the first kind Bessel number of the second kind exponential Riordan array Stifling numbers Bessel matrix. Bessel number of the first kind Bessel number of the second kind exponential Riordan array Stifling numbers Bessel matrix.
  • 相关文献

参考文献23

  • 1BURCHNALL J L. The Bessel polynomials [J]. Canadian J. Math., 1951, 3: 62-68.
  • 2GROSSWALD E. Bessel Polynomials [M]. Springer, Berlin, 1978.
  • 3CHOI J Y, SMITH J D H. On the unirnodality and combinatories of Bessel numbers [J]. Discrete Math., 2003, 264(1-3): 45-53.
  • 4HAN H, SEO S. Combinatorial proofs of inverse relations and log-concavity for Bessel numbers [J]. European J. Combin., 2008, 29(7): 1544-1554.
  • 5SHAPIRO L W, GETU S, WOAN W J. et al. The Riordan group [J]. Discrete App[. Math., 1991, 34(1-3): 229-239.
  • 6BARRY P. On a family of generalized P&scal triangles defined by exponential Riordan arrays [J]. J. Integer Seq., 2007, 10(3): Article 07.3.5, 21.
  • 7pp. ZHAO Xiqiang, WANG Tianming. Some identities related to reciprocal functions [J]. Discrete Math., 2003, 265(1-3): 323-335.
  • 8SHAPIRO L W. Bijections and the Riordan group [J]. Theoret. Comput. Sci., 2003, 307(2): 403-413.
  • 9GRAHAM R, KNUTH D, PATASHNIK O. Concrete Mathematics [M]. Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1989.
  • 10KNUTH D. Convolution polynomiMs [J]. The Mathematica Journal, 1992, 2: 67-78.

同被引文献2

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部