期刊文献+

The Equivalence between Property (ω) and Weyl’s Theorem

The Equivalence between Property (ω) and Weyl’s Theorem
下载PDF
导出
摘要 We call T C B(H) consistent in Fredholm and index (briefly a CFI operator) if for each B ∈ B(H), TB and BT are Fredholm together and the same index of B, or not Fredholm together. Using a new spectrum defined in view of the CFI operator, we give the equivalence of Weyl's theorem and property (ω) for T and its conjugate operator T^*. In addition, the property (ω) for operator matrices is considered. We call T C B(H) consistent in Fredholm and index (briefly a CFI operator) if for each B ∈ B(H), TB and BT are Fredholm together and the same index of B, or not Fredholm together. Using a new spectrum defined in view of the CFI operator, we give the equivalence of Weyl's theorem and property (ω) for T and its conjugate operator T^*. In addition, the property (ω) for operator matrices is considered.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2011年第4期705-712,共8页 数学研究与评论(英文版)
基金 Supported by Plan of the New Century Talented Person of the Ministry of Education of China (Grant No.NCET-06-0870) the Fundamental Research Funds for the Central Universities (Grant GK200901015)
关键词 Weyl's theorem property (ω) SPECTRUM Weyl's theorem property (ω) spectrum
  • 相关文献

参考文献16

  • 1AIENA P, PENA P. Variations on Weyl's theorem [J]. J. Math. Anal. Appl., 2006, 324(1): 566-579.
  • 2BERBERIAN S K. An extension of Weyl's theorem to a class of not necessarily normal operators [J]. Michigan Math. J., 1969, 16: 273-279.
  • 3CAO Xiaohong. Weyl spectrum of the products of operators [J]. J. Korean Math. Soc., 2008, 45(3): 771-780.
  • 4BERBERIAN S K. The Weyl spectrum of an operator [J]. Indiana Univ. Math. J., 1970/1971, 20: 529-544.
  • 5COBURN L A. Weyl's theorem for nonnormal operators [J]. Michigan Math. J., 1966, 13: 285-288.
  • 6HARTE R. Invertibility and Singularity for Bounded Linear Operators [M]. Marcel Dekker, Inc., New York, 1988.
  • 7HARTE R. Fredholm, Weyl and Browder theory [J]. Proc. Roy. Irish Acad. Sect. A, 1985, 85(2): 151-176.
  • 8HARTE R, LEE W Y. Another note on Weyl's theorem [J]. Trans. Amer. Math. Soc., 1997, 349(5): 2115-2124.
  • 9ISTRATESCU V I. On Weyl's spectrum of an operator (I) [J]. Rev. Roumaine Math. Pures Appl., 1972, 17: 1049-1059.
  • 10OBERAI K K. On the Weyl spectrum [J]. Illinois J. Math., 1974, 18: 208-212.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部