摘要
We call T C B(H) consistent in Fredholm and index (briefly a CFI operator) if for each B ∈ B(H), TB and BT are Fredholm together and the same index of B, or not Fredholm together. Using a new spectrum defined in view of the CFI operator, we give the equivalence of Weyl's theorem and property (ω) for T and its conjugate operator T^*. In addition, the property (ω) for operator matrices is considered.
We call T C B(H) consistent in Fredholm and index (briefly a CFI operator) if for each B ∈ B(H), TB and BT are Fredholm together and the same index of B, or not Fredholm together. Using a new spectrum defined in view of the CFI operator, we give the equivalence of Weyl's theorem and property (ω) for T and its conjugate operator T^*. In addition, the property (ω) for operator matrices is considered.
基金
Supported by Plan of the New Century Talented Person of the Ministry of Education of China (Grant No.NCET-06-0870)
the Fundamental Research Funds for the Central Universities (Grant GK200901015)