期刊文献+

Upper Locating-Domination Numbers of Cycles

Upper Locating-Domination Numbers of Cycles
下载PDF
导出
摘要 A set D of vertices in a graph G = (V, E) is a locating-dominating set (LDS) if for every two vertices u, v of V / D the sets N(u) ∩D and N(v) ∩ D are non-empty and different. The locating-domination number γL(G) is the minimum cardinality of an LDS of G, and the upper-locating domination number FL(G) is the maximum cardinality of a minimal LDS of G. In the present paper, methods for determining the exact values of the upper locating-domination numbers of cycles are provided. A set D of vertices in a graph G = (V, E) is a locating-dominating set (LDS) if for every two vertices u, v of V / D the sets N(u) ∩D and N(v) ∩ D are non-empty and different. The locating-domination number γL(G) is the minimum cardinality of an LDS of G, and the upper-locating domination number FL(G) is the maximum cardinality of a minimal LDS of G. In the present paper, methods for determining the exact values of the upper locating-domination numbers of cycles are provided.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2011年第4期757-760,共4页 数学研究与评论(英文版)
基金 Supported by the National Natural Science Foundation of China (Grant No.60773078) the Natural Science Foundation of Anhui Provincial Education Department (No.KJ2011B090)
关键词 locating-domination number upper locating-domination number CYCLE locating-domination number upper locating-domination number cycle
  • 相关文献

参考文献6

  • 1BLIDIA M, CHELLALI M, MAFFRAY F, et al. Locating-domination and identifying codes in trees [J]. Australas. J. Combin., 2007, 39: 219-232.
  • 2BLIDIA M, FAVARON O, LOUNES R. Locating-domination, 2-domination and independence in trees [J]. Australas. J. Combin., 2008, 42: 309-316.
  • 3CHELLALI M, MIMOUNI M, SLATER P J. On locating-domination in graphs [J]. Discuss. Math. Graph Theory, 2010, 30(2): 223-235.
  • 4HAYNES T W, HEDETNIEMI S T, SLATER P J. Fundamentals of Domination in Graphs [M]. Marcel Dekker, New York, 1998.
  • 5SLATER P J. Domination and location in acyclic graphs [J]. Networks, 1987, 17: 55-64.
  • 6SLATER P J. Dominating and reference sets in graphs [J]. J. Math. Phys. Sci., 1998, 22: 445-455.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部