期刊文献+

溴化锂溶液垂直降膜过程中流动与传热的数值模拟 被引量:5

Numerical Simulation on Flow and Heat Transfer of LiBr Solution along the Vertical Wall
下载PDF
导出
摘要 采用流体体积(VOF)法捕捉自由界面,并应用连续表面力(CSF)模型,建立了垂直降膜波动模型,研究了溴化锂溶液垂直降膜过程中的波动过程,根据波动模型得到的界面信息,建立了以波速为动坐标系的固定界面传热模型,同时考察了波动对传热的影响,并建立了垂直降膜波动模型和固定界面传热模型。结果表明:一定入口频率的扰动发展为孤波和毛细波的组合波,孤波波峰处出现了循环流动,且在第一个毛细波波谷处出现回流。波动强化机理与Pr数有关,Pr数较大时,对流起主要作用,Pr数较小时,液膜减薄起主要作用。 The numerical model of falling film flow along a vertical wall was built up to investigate the wave behavior of aqueous LiBr solution using Volume of Fluid (VOF)model to track the free surfaces and using Continuous Surface Force (CSF) model for dynamic boundary conditions considering the effect of surface tension Based on the information of interface positions, a heat transfer model under the conditons of immobile interface was built up to investigate the effect of wave on heat transfer. The results showed that at some certain frequency the small disturbance could give rise to a big amplitude solitary roll wave and some small amplitude capillary waves. A big circulation flow at the wave peak and a backflow at the smallest film thickness were observed. Heat transfer model indicated that the enhancement mechanism depended on Pr number. The convective effect dominated when Pr number was large while the film thinning dominated when Pr number was small.
出处 《化学反应工程与工艺》 CAS CSCD 北大核心 2011年第2期114-120,共7页 Chemical Reaction Engineering and Technology
基金 国家863项目(No2007AA05Z214) 教育部新世纪优秀人才基金项目(NCET-05-0280)
关键词 流体体积法 连续表面张力模型 垂直降膜波动模型 传热 数值模拟 Volume of Fluid model Continuous Surface Force model vertical falling-film wave model heattransfer enhancement numerical simulation
  • 相关文献

参考文献12

  • 1Fulford G D. The flow of liquids in thin films[M]// Drew B T. Advances in Chemical Engineering. 5. New York: Academic Press, 1964: 151-236.
  • 2Alekseenko S V, NakoD,akov V E, Pokusaev B G. Wave flow of liquid films [M]. New York: Begell House, 1994: 29-40.
  • 3Chang H C, Demekhin E A. Complex wave dynamics on thin films [M]. Amsterdam:Elsevier Press, 2002: 105-130.
  • 4Chun K R, Seban R A. Heat transfer to evaporating liquid films [J]. ASME J Heat Transfer, 1971, 93(4): 391-396.
  • 5Nusselt W. Die oberflachenkondensation des wasserdampfes [J]. Zeitschrift des Vereines Deutscher Ingenieure, 1916, 60(2): 541-546.
  • 6Hirshburg R I, Florschuetz L W. Laminar wavy-film flow Part II: condensation and evaporation [J]. ASME J Heat Transfer, 1982, 104(3): 459-464.
  • 7Stuhltrager E, Miyara A, Uehara H. Flow dynamics and heat transfer of a condensate film on a vertical wall Ⅱ: Flow dynamics and heat transfer [J]. Int J Heat Mass Tranfer. 1995, 38( 15): 2715-2722.
  • 8Serifi K, Malamataris N A, Bonrozoglou V. Transient flow and heat transfer phenomena in inclined wavy films [J]. International Journal of Thermal Sciences, 2004, 43(8): 761-767.
  • 9Miyara A. Numerical analysis on flow dynamics and heat transfer of failing liquid with interfacial waves [J]. Heat and Mass Transfer, 1999, 35(4): 298-306.
  • 10Kunugi T, Kino C. DNS of falling film structure and heat transfer via MARS method [J]. Computers and Structure, 2005, 83(6-7): 455-462.

同被引文献56

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部