期刊文献+

BIDIRECTIONALLY COUPLED SYNCHRONIZATION OF THE GENERALIZED LORENZ SYSTEMS 被引量:3

BIDIRECTIONALLY COUPLED SYNCHRONIZATION OF THE GENERALIZED LORENZ SYSTEMS
原文传递
导出
摘要 Wu, Chen, and Cai (2007) investigated chaos synchronization of two identical generalized Lorenz systems unidirectionally coupled by a linear state error feedback controller. However, bidirec- tional coupling in real life such as complex dynamical networks is more universal. This paper provides a unified method for analyzing chaos synchronization of two bidirectionally coupled generalized Lorenz systems. Some sufficient synchronization conditions for some special coupling matrices (diagonal ma- trices, so-called dislocated coupling matrices, and so on) are derived through rigorously mathematical theory. In particular, for the classical Lorenz system, the authors obtain synchronization criteria which only depend upon its parameters using new estimation of the ultimate bounds of Lorenz system (Chaos, Solitons, and Fractals, 2005). The criteria are then applied to four typical generalized Lorenz systems in the numerical simulations for verification.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2011年第3期433-448,共16页 系统科学与复杂性学报(英文版)
基金 supported by the National Natural Science Foundation of China under Grant Nos.60804039 and 60974081 the National Basic Research Program of China under Grant No.2007CB310805
关键词 Bidirectionally-coupled CHAOS generalized lorenz system SYNCHRONIZATION ultimate bound. Lorenz系统 耦合同步 广义 混沌同步 单向耦合系统 耦合矩阵 反馈控制器 状态误差
  • 相关文献

参考文献1

二级参考文献25

  • 1D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world' networks, Nature, 1998, 393(4): 440-442.
  • 2A. L. Barabasi and R. Albet, Emergence of scaling in random networks, Science, 1999, 286(15): 509-512.
  • 3M. E. J. Newman, Community structure in social and biological network, Proc. Natl. Acad. Sci., 2002, 99(12): 7821-7826.
  • 4P. Gleiser and L. Danon, Community structure in jazz, Advances in Complex Systems, 2003, 6(4): 565-573.
  • 5G. W Flake, S. R. Lawrence, C. L. Giles, and F. M. Coetzee, Self-organization and identification of Web communities, IEEE Computer, 2002, 35(3): 66-71.
  • 6C. Hugenii, Horoloquim Oscilatorium, Apud F. Muguet, Parisiis, 1673.
  • 7L. M. Pecora and T. L. Carroll, Master stability function for synchronized coupled systems, Phys. Rev. Lett., 1998, 80(10): 2109-2112.
  • 8X. F. Wang and G. Chen, Synchronization in small-world dynamical networks, Int. J. Bifur. Chaos, 2002, 12(1): 187-192.
  • 9J. Lu and G. Chen, A time-varying complex dynamical network models and its controlled synchronization criteria, IEEE Trans. Auto. Contr., 2005, 50(6): 841-846.
  • 10Y. Zhang, G. Hu, H. A. Cerdeira, S. Chen, T. Braun, and Y. Yao, Partial synchronization and spontaneous spatial ordering in coupled chaotic systems, Phys. Rev. E, 2001, 63(2): 026211.

共引文献3

同被引文献9

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部