期刊文献+

THE LIMIT THEOREM FOR DEPENDENT RANDOM VARIABLES WITH APPLICATIONS TO AUTOREGRESSION MODELS

THE LIMIT THEOREM FOR DEPENDENT RANDOM VARIABLES WITH APPLICATIONS TO AUTOREGRESSION MODELS
原文传递
导出
摘要 This paper studies the autoregression models of order one, in a general time series setting that allows for weakly dependent innovations. Let {Xt} be a linear process defined by Xt =∑k=0^∞ψ kεt-k, where {ψk, k ≥ 0} is a sequence of real numbers and {εk, k = 0, ±1, ±2,...} is a sequence of random variables. Two results are proved in this paper. In the first result, assuming that {εk, k ≥ 1} is a sequence of asymptotically linear negative quadrant dependent (ALNQD) random variables, the authors find the limiting distributions of the least squares estimator and the associated regression t statistic. It is interesting that the limiting distributions are similar to the one found in earlier work under the assumption of i.i.d, innovations. In the second result the authors prove that the least squares estimator is not a strong consistency estimator of the autoregressive parameter a when {εk, k ≥ 1} is a sequence of negatively associated (NA) random variables, and ψ0 = 1, ψk = 0, k ≥ 1.
机构地区 College of Mathematics
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2011年第3期565-579,共15页 系统科学与复杂性学报(英文版)
基金 supported by the National Natural Science Foundation of China under Grant Nos.10971081 and 11001104 985 Project of Jilin University
关键词 ALNQD autoregression models least squares estimator negatively associated unit root test. 相依随机变量 自回归模型 极限定理 最小二乘估计 时间序列 应用 随机变量序列 渐近线性
  • 相关文献

参考文献2

二级参考文献3

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部