期刊文献+

Selberg's Integral for Ramanujan Automorphic Representation

Selberg's Integral for Ramanujan Automorphic Representation
原文传递
导出
摘要 Let π△ be the automorphic representation of GL(2, QA) associated with Ramanujan modular form A and L(s, π△) the global L-function attached to π△. We study Selberg's integral for the automorphic L-function L(s, π△) under GRH. Our results give the information for the number of primes in short intervals attached to Ramanujan automorphic representation. Let π△ be the automorphic representation of GL(2, QA) associated with Ramanujan modular form A and L(s, π△) the global L-function attached to π△. We study Selberg's integral for the automorphic L-function L(s, π△) under GRH. Our results give the information for the number of primes in short intervals attached to Ramanujan automorphic representation.
作者 Qing Feng SUN
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第7期1449-1454,共6页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China (Grant No. 10571107)Acknowledgements The author expresses her thanks to Professor Jianya Liu and Professor Yangbo Ye for encouragernent, and to Professor Xiumin Ren for valuable suggestions. This work was completed when the author visited The University of Iowa supported by CSC. The author would like to thank Department of Mathematics, The University of Iowa for hospitality and support.
关键词 Automorphic L-functions Selberg's integral primes in short intervals Automorphic L-functions, Selberg's integral, primes in short intervals
  • 相关文献

参考文献9

  • 1Deligne, P.: La conjecture de Weil I. Inst. Hautes Etudes Sci. Publ. Math., 43, 273-307 (1974).
  • 2Selberg, A.: On the normal density of primes in short intervals, and the difference between consecutive primes. Arch. Math. Na$urvid., 47(6), 87-105 (1943).
  • 3Qu, Y.: Selberg's normal density theorem for automorphic L-functions for GLm. Acta Mathematica Sinica, English Series, 23(10), 1903-1908 (2007).
  • 4Gallagher, P. X.: A large sieve density estimate near a = 1. Invent. Math., 11, 329-339 (1970).
  • 5Gallagher, P. X.: Some consequences of the Riemann hypothesis. Acta Arith., 37, 339-343 (1980).
  • 6Saffari, B., Vaughan, R. C.: On the fractional parts of x/n and related sequences II. Ann. Inst. Fourier.
  • 7Kumchev, A.: The Distribution of Primes Numbers, 2005, available at http://www.ma.utexas.edu/users/ kumchev/DistributionOfPrimesNotes.pdf.
  • 8Moreno, C. J.: Explicit formulas in the theory of automorphic forms. Lecture Notes in Math., Vol. 626, Springer, Berlin, 1977, 73-216.
  • 9Iwaniec, H., Kowalski, E.: Analytic Number Theory, Colloquium Publ., 53, Amer. Math. Soc., Providence, 2004.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部