期刊文献+

基于概率潜在语义分析的中文文本分类研究 被引量:4

Chinese Text Classification Based on Probabilistic Latent Semantic Analysis
下载PDF
导出
摘要 概率潜在语义模型使用统计的方法描述"文档—潜在语义—词"之间的概率分布关系,其实质是模拟了潜在的概率语义空间,并将文档和词映射到同一个语义空间.该文将概率潜在语义分析模型用于中文文本分类,一方面较好地处理了自然语言中的同义、多义问题;另一方面通过计算概率潜在语义空间中向量的距离来获得文档间的类别信息从而达到文本分类的目的.实验结果表明,该分类器具有良好的分类性能. The model of probability latent semantic analysis based on statistical methods describes the probability distribution between latent semantics and documents or words,by which a probabilistic latent semantic space is actually simulated.The words and documents are mapped into the same semantic space.In this paper,the model is applied to Chinese text classification.On one hand,it deals with the synonyms and polysemy in natural language better.On the other hand,the class information among documents is obtained by calculating the vector distance in probabilistic latent semantic space,so as to achieve the purpose of text classification.The results show that the classifier has a good performance.
作者 王奕
出处 《甘肃联合大学学报(自然科学版)》 2011年第4期75-78,共4页 Journal of Gansu Lianhe University :Natural Sciences
关键词 中文文本分类 概率潜在语义分析 语义空间 Chinese text classification probabilistic latent semantic analysis(PLSA) semantic space
  • 相关文献

参考文献8

  • 1SALTON G, LESK M E. Computer evaluation of in- dexing and text processing[J]. Journal of the ACM, 1968,15 (1) : 8-36.
  • 2DEERWESTER S,DUMAIS S T,Furnas C W,et al. Indexing by latent semantic analysis[J]. Journal of the American Society of Information Science, 1990, 41(6), 391-407.
  • 3THOMAS HOFMANN. Probabilistic latent semantic indexing[C]//Proceedings of the 22nd international conference on research and development in informa- tion retrieval. Berkeley, Californiaz [s. n.], 1999,50- 57.
  • 4THOMAS HOFMANN. Probabilistic latent semantic analysis[C]//Proceedings of the 15th conference on uncertainty in artificial intelligence. Stockholm: [s. n. ],1999:289-296.
  • 5THOMAS HOFMANN. Unsupervised learning by probabilistic latent semantic analysis [J]. Machine Learning, 2001,42(1) :177-196.
  • 6SUDARSUN S, VENKATESWARLU M. Unsuper- vised contextual keyword relevance learning and measurement using PLSA[C]//Annual india confer- ence. Delhi: [s. n. ], 2006 : 1-6.
  • 7庞剑锋,卜东波,白硕.基于向量空间模型的文本自动分类系统的研究与实现[J].计算机应用研究,2001,18(9):23-26. 被引量:293
  • 8宋枫溪,高林.文本分类器性能评估指标[J].计算机工程,2004,30(13):107-109. 被引量:33

二级参考文献10

  • 1黄萱青 吴立德.独立于语种的文本分类方法[M].,2000.37-43.
  • 2鲁松 白硕 等.文本中词语权重计算方法的改进[M].,2000.31-36.
  • 3卜东波.聚类/分类理论研究及其在大模型文本挖掘的应用:博士论文[M].,2000..
  • 4黄萱菁,2000 International Conference on Multilingual Information Processing,2000年,37页
  • 5鲁松,2000 International Conference on Multilingual Information Processing,2000年,31页
  • 6卜东波,博士学位论文,2000年
  • 7Yang Yiming,Proceedings of ACMSIGIR Conference on Research and Development in Information Retrieval(SIGIR),1999年,42页
  • 8Yang Yiming,J Information Retrieval,1999年,1卷,1/2期,67页
  • 9Sebastiani F. Machine Learning in Automated Text Categorization.ACM Computing Surveys, 2002, 34(1): 1-47
  • 10YANG Yiming. An Evaluation of Statistical Approaches to Text Categorization. Information Retrieval, 1999, 1(1-2): 69-903.周水庚.一个无须词典支持和切词处理的中文文档分类系统.计算机研究与发展,2001,38(7):839-844

共引文献322

同被引文献31

  • 1黄昌宁,赵海.中文分词十年回顾[J].中文信息学报,2007,21(3):8-19. 被引量:249
  • 2李良俊,张斌,杨明.基于LSA降维的KNN文本分类算法[J].东北师大学报(自然科学版),2007,39(2):33-36. 被引量:7
  • 3ABBASI R, STAAB S, CIMIANO P. Organizing resource on tagging systems using T-ORG [ C ]//Proc of Workshop on Bridging the Gap between Semantic Web and Web 2.0. 2007:97-100.
  • 4BEGEMAN G, KELLER P, SMADJIA F. Automated tag clustering :im- proving search and exploration in the tag space [ C ]//Prec of Collabo- rative Web Tagging Workshop at World Wide Web. 2006:22-26.
  • 5Laurence A. F. Park, Kotagiri Ramamohanarao. An a- nalysis of latent semantic term self- correlation [ J ]. ACM Transactions on Information Systems ,2009,27 (2) : 1 - 35.
  • 6http: // en. wikipedia, org/wiki/Category : Main _ topic _ classifications[EB].
  • 7Li Wei, McCallum Andrew. Pachin ko al locati on: DAG2 structuredmixture models of topic correlationsProceedings of ICML206. Pitts-burg, Pennsylvania, 2006 : 5772584.
  • 8J. E. Mosimann. On the compound multinomial distribution, the multi-variate B - distribution,and correlations among populations [ J ].Biometrika,1962,49: 65 - 89.
  • 9Sudderth E B. Graphical Models for Visual Object Recognition andTracking [Ph.D.Dissertation],Department of Electrical Engineeringand Computer Science, Massachusetts Institute of Technology, USA,2006.
  • 10罗景,涂新辉.基于概率潜在语义分析的中文信息检索[J].计算机工程,2008,34(2):199-201. 被引量:11

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部