期刊文献+

CN-环 被引量:8

CN-rings
下载PDF
导出
摘要 研究CN-环的一些性质,主要证明了如下结果:①设R为CN-环和左SF-环,则R为强正则环;②R为约化环当且仅当R是左NPP环和CN-环;③CN-环的次直积也是CN-环;④设R为CN-环,则R为弱reversible环,反之未必;⑤设R为CN-环,每个单奇异左R-模Wnil-内射,则R为约化环;⑥设R为CN-环,每个单奇异左R-模YJ-内射,则R为约化的弱正则环. This paper shows the following results: ① If R is a CN-ring and left SF-ring,then R is a strongly regular ring;② R is a reduced ring if and only if R is a CN-ring and left NPP ring;③ The subdirect product of CN-rings is also a CN-ring;④ If R is a CN-ring,then R is a weakly reversible ring,but the converse is not true;⑤ If R is a CN-ring whose simple singular left modules are Wnil-injective,then R is a reduced ring;⑥ If R is a CN-ring whose simple singular left modules are YJ-injective,then R is a reduced weakly regular ring.
出处 《扬州大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第2期7-9,共3页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(10771182) 江苏省普通高校研究生科研创新项目(CX09B-309Z)
关键词 CN-环 幂零元 中心元 约化环 Wnil-内射模 CN-rings nilpotent elements central elements reduced rings Wnil-injective modules
  • 相关文献

参考文献10

  • 1DRAZIN M P. Rings with central idempotent or nilpotent elements [J]. Proc Edinburgh Math Soc, 1958, 9(2) 157-165.
  • 2REGE M B. On von Neumann regular rings and SF-rings [J]. Math Jpn, 1986, 31(6) : 927-936.
  • 3WEI Jun-chao, CHEN Jian-hua. Nil-injective rings[J]. Int Electron J Algebra, 2007, 2: 1-21.
  • 4WEI J un-chao. Certain rings whose simple singular modules are nil-injective [J]. Turk J Math, 2008, 32(4): 393-4O8.
  • 5DING Nan-qing, CHEN Jian-long. Rings whose simple singular modules are YJ-injective [J]. Math Jpn, 1994, 40(1) : 191-195.
  • 6KIM N K, NAM S B, KIM J Y. On simple singular GP-injective modules[J]. Commun Algebra, 1999, 27(5) : 2087-2096.
  • 7魏俊潮.右弱C2环[J].扬州大学学报(自然科学版),2003,6(3):5-7. 被引量:6
  • 8ZHAO Liang, YANG Gang. On weakly reversible rings [J]. Acta Math Univ Comenianae, 2007, 76(2): 189- 192.
  • 9HABEB J M. A note on zero commutative and duo rings [J] .Math J Okayama Univ, 1990, 32(1): 73-76.
  • 10CAMILLO V, XIAO Yu-fei. Weakly regular rings [J]. Commun Algebra, 1994, 22(10): 4095-4112.

二级参考文献3

  • 1NICHOLSON W K, YOUSIF M F. Weakly continuous and C2-rings[J]. Comm Alg, 2001, 29(6):2429-2446.
  • 2WEI J C. The rings characterized by minimal left ideals[J]. Acta Math Sinica, 2003, 46(4):203-214.
  • 3张春平,魏俊潮.MC2环[J].扬州大学学报(自然科学版),2003,6(1):1-3. 被引量:4

共引文献5

同被引文献53

  • 1魏俊潮.Quasi-duo环的刻画[J].扬州大学学报(自然科学版),2006,9(3):1-4. 被引量:8
  • 2HERSTEIN I N. A condition for the commutativity of rings [J]. Canad J Math, 1957, 9(3):583-586.
  • 3PUTCHA M S, WILSON R S, YAQUB A. Structure of rings satisfying certain identities on commutators [J]. Proc Amer Math Soc, 1972, 32(1): 57-62.
  • 4KIM N K, LEE Y. Extensions of reversible rings [J]. J Pure Appl Algebra, 2003, 185(1/3): 207-223.
  • 5KIM J Y. Certain rings whose simple singular modules are GP injective [J]. Proc Japan Acad: Ser A Math Sci, 2005, 81(7): 125-128.
  • 6HWANG S U, JEON Y C, PARK K S. On NCI rings [J]. Bull Korean Math Soc, 2007, 44(2): 215-223.
  • 7DRAZIN M P. Rings with central idempotent or nilpotent elements [J]. Proc Edinburgh Math Soc, 1958, 9(2): 157-165.
  • 8刘绍学,郭晋云,朱彬,等.环与代数[M].2版.北京:科学出版社,2009:310.
  • 9FEIGELSTOCK S. A note on subdirectly irreducible rings[J]. Bull Austral Math Soc, 1984, 29(1) : 137-141.
  • 10GOODEARL K R. Von Neumann regular rings [M]. Boston: Pitman, 1979: 231-284.

引证文献8

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部