期刊文献+

免疫支持向量机在故障测距中的应用 被引量:1

Application of Immune Support Vector Regression for Fault Location on Power Transmission Line
下载PDF
导出
摘要 针对支持向量机参数选择难的问题,提出了一种免疫支持向量回归机进行故障测距。该算法运用免疫算法来优化支持向量回归机的参数,减少人为选择参数的盲目性,提高了SVR的推广预测能力。与标准支持向量机算法相比,文章的参数选择具有更明确的理论指导,加速了参数的寻优过程。大量仿真表明:该算法测距精度高,适应性强,训练样本少,测距结果不受故障过渡电阻、对端系统阻抗变化等的影响。 Because it is difficult to select the parameters of support vector regression(SVR),so an immune support vector regression(ISVR) for fault location is presented in the paper.It uses immune algorithm to optimize the parameters of SVR in order to globally optimize parameters and reduce the blindness of parameters selection by man and improve generation performance of SVR.Compared to the standard SVR,the parameters selection of this algorithm has more specific rule to follow and accelerates the optimization process.A large number of simulations show that the algorithm for fault location is of higher precision,stronger adaptability,fewer samples;and it is free from influence of factors such as fault transition resistance,opposite side impedance changes,and it eliminates false root in the conventional one-terminal algorithm and divergence in iteration.
出处 《华中电力》 2011年第3期94-98,共5页 Central China Electric Power
关键词 免疫算法 支持向量回归机 故障测距 immune algorithm SVR(support vector regression) fault location
  • 相关文献

参考文献10

  • 1Vapnik V. An overview of statistical learning theory [J]. IEEE Trans. on Neural Network, 1999, 10 (5): 988-999.
  • 2De Souza S M, eta1. Voltage and currentpatterns for fault location in transmission lines[C]. Proceedings of International Joint Conference on Neural Networks, 2007: 1-6.
  • 3Thukaram D, et al. A new approach for fault location identification in transmission system using stability analysis and SVMs[C]. Proceedings of International Conference on Power Electronics, Driver and Energy Systems, 2006: 1-6.
  • 4Vapnik V. The nature of statistical learning theory [M]. New York: Springer-Verlag, 1995.
  • 5Keerthi S S, et al. Asymptotic behaviors of support vector machines with Gaussian kernel [J]. Neural Computation, 2003, 15(7): 1667-1689.
  • 6Lin H T, et al. A study on sigmoid kernels for SVM and the training of non-PSD Kernels by SMO-type methods [EB]. March 2003, http:// www. csie. ntu. edu. tw/ -cjlin / papers.html.
  • 7Keerth I S. Efficient tuning of SVM hyperparameters using radius margin bound and iterative algorithms [J]. IEEE Trans. on Neural Network, 2002, 13 (5): 1225 - 1229.
  • 8Fronhlich H, etal. Feature selection for support vector machines by means of genetic algorithms [C]. Proceedings of the l 5th IEEE international conference on tools with artificial intelligence, 2003, 142-48.
  • 9De Castro L N, et al. Artificial immune systems: part I basic theory and application[R]. Technical Report DCA-RT, 2000.
  • 10焦李成,杜海峰,等.免疫优化、计算、学刊和识别[M].北京:科学出版社,2006.

同被引文献13

  • 1王红军,张建民,徐小力.基于支持向量机的机械系统状态组合预测模型研究[J].振动工程学报,2006,19(2):242-245. 被引量:17
  • 2侯澍旻,李友荣,刘光临.基于支持向量机的设备振动信号趋势预测[J].湖北工业大学学报,2006,21(3):12-14. 被引量:4
  • 3YANG Bo-suk, Widodo Achmad. Support vector machine for machine fault diagnosis and prognosis[J]. Jotmlnl of Sytacm Dotn trod Dynamics, 2008, 2 (1): 12-23.
  • 4Vapnik V N. Statistical learning theory[M]. New York: John Wiley & Sons, 1998: 10-40.
  • 5Venkat R. Nadadoor, Hector De la Hoz Siegler, Stash L Shah, William C Mc Caffrey, Amos Ben-Zvi. Online sensor for monitoring a microalgal bioreactor system using support vector regression[J]. Chaomoltiea and l:olligaat Laboratory Syatoms, 2012 (110): 38-48.
  • 6Sancho Salcedo-Sanz, Emilio G. Ortiz-Garcia, mgel M. P6rez-Bellido, Antonio Portilla-Figueras,Luis Prieto. Short term wind speed prediction based on evolutionary support vector regression algorithms[J]. Systems with Appfie, mioaa, 2011(38): 4052-4057.
  • 7HOU Shu- rain, LI You- rong. Short- term fault prediction based on support vector machines with parameter.optimization by evolution strategy[J]. Expert Syattm withAllie, a, tiona, 2009 (36): 12383-12391.
  • 8HUANG Ji, BO Yu-cheng, WANG Hui-yuan. Electromechanical equipment state forecasting based on genetic algorithm-support vector regression[J]. Systems with Allictlio, 2011 (38): 8399-8402.
  • 9Takens F. Detecting strange attractor in turbulence[J].locturo Not in cs, 1981, 898(2): 361-381.
  • 10Fraser A M, Swinney H L. Independent coordinates for strange attractors from mutual information[J], lrays Roy A, 1986, 33(2): 1134-1140.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部