期刊文献+

基于LLE和LS_SVM的胃粘膜肿瘤细胞图像分类 被引量:3

Classification of Gastric Cancer Cells Based on LLE and LS_SVM
下载PDF
导出
摘要 胃粘膜肿瘤细胞图像的复杂性,组织器官形状的不规则性以及不同细胞的差异性,使得采用一般的线性分类方法对其进行分类很困难,结合局部线性嵌入(LLE)在处理非线性数据及最小二乘支持向量机(LS_SVM)在处理小样本、高维数及泛化问题方面的优势,文章提出一种基于LLE+LS_SVM的胃粘膜肿瘤细胞图像分类方法,并采用LS_SVM的线性拟合误差来判断实验效果,最后比较本文方法与其他分类方法的优越性。实验结果表明,该方法在分类准确率和运行时间方面都有很大的优势。 It is difficult to recognize gastric tumor cell images by the the linear classification methods for the complexity of gastric tumor cell images,the irregular shape of tissues and organs and the differentiation of different cells.As nonlinear classification methods,local linear embedding(LLE) can well deal with nonlinear data and least squares support vector machine(LS_SVM) can well resolve small sample size,high dimension and generalization issues.A classification method is proposed in this paper based on LLE and LS_SVM.The linear fitting function is used to fit its linear errors,the linear fitting error is used to determine the results,finally superiority of method in this paper is compared with other classification methods.It is proved by the experiment results that this method has a significant advantage in classification accuracy and running time.
作者 甘岚 吕文雅
出处 《华东交通大学学报》 2011年第3期83-87,共5页 Journal of East China Jiaotong University
基金 江西省科技厅项目(20051B0104800)
关键词 LLE LS_SVM 肿瘤细胞分类 locally linear embedding least square support vector machine tumor cell classfication
  • 相关文献

参考文献9

二级参考文献32

  • 1侯越先,丁峥,何丕廉.基于自组织的鲁棒非线性维数约减算法[J].计算机研究与发展,2005,42(2):188-195. 被引量:4
  • 2高世伟,刘彩虹,刘亚利.基于DCOM技术实现的控制系统[J].微计算机信息,2005,21(07X):1-2. 被引量:10
  • 3VAPNIK V.An overview of statistical learning theory[J].IEEE Transactions on Neural Networks,1999,10(5):988-999.
  • 4SUYKENS J A K,VANDEWALLE J.Least squares support vector machine classifiers[J].Neural Processing Letters,1999,9(3):293-300.
  • 5SUYKENS J A K,DEBRABANTER J,LUKAS L,et al.Weighted least squares support vector machines:Robustness and sparse approximation[J].Neurocomputing,2002,48(1/4):85-105.
  • 6SCHAPIRE R.The strength of weak learnability[J].Machine Learning,1990,5(2):197-227.
  • 7FREUND Y,SCHAPIRE R E.A decision theoretic generalization of on-line learning and an application to boosting[J].Journal of Computer and System Science,1997,55(1):119-139.
  • 8BAR.LOW HB. Unsupervised learning[ J]. Neural Computation, 1989, 1 (3) : 295 - 311.
  • 9MARCUS G. Programs of the Mind[ J]. Science, 2004, 304(5676):1450 - 1451.
  • 10BAUM E. What Is Thought?[ M]. Cambridge, MA: MIT Press, 2004.

共引文献21

同被引文献26

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部