摘要
根据人类专家处理问题的一般思路,提出一种仿人非线性量化函数并把它有效地应用于模糊神经网络控制器中。仿真研究表明,它能有效地克服原有算法的缺陷,具有良好的动、静态性能。
Based on human experts general thought, a new nonlinear quantification function is presented. It is appied to a fuzzy neural network. The simulation results indicate that the new control algorithm is able to replace the defects found in the traditional algorithm. The results show the function has ideal dynamic and static performance qualities.
基金
湖北省科委重点科技资助!( 编号96B16)
关键词
非线性量化函数
模糊控制
神经网络
仿真
nonlinear quantification function
fuzzy control , neural network , adaptive control