摘要
将影响新型燃料的机械强度和贮存性能的主要因素作为输入变量,利ANN 建立质量预测模型,并将随机产生的大量工艺条件输入训练好的ANN,通过对符合质量要求的输出结果所对应的输入变量统计获得优化的稳定操作区域。
The main factors related to mechanical intensity and storage capability of new type fuel are input into ANN which is used to set up qualities prediction model. A Large amount of random data input into the well educated ANN is accounted if the results of the output are qualified. This optimizing method enhances the stability of product qualities.
出处
《华东交通大学学报》
1999年第4期6-9,共4页
Journal of East China Jiaotong University
基金
铁道部专项经费资助!项目(J98248)
关键词
人工神经网络
固体燃料
生产工艺
优化
artificial neural network
solid fuel
manufacturing technology
optimize of manu facturing technologg