期刊文献+

临床分离MRSA中氨基糖苷类双功能修饰酶AAC(6)′-APH(2″)的克隆表达与活性测定

Cloning,overexpression and assay of the aminoglycoside bifunctional modifying enzyme AAC(6′)-APH(2″) from MRSA clinical isolates
下载PDF
导出
摘要 双功能酶AAC(6′)-APH(2″)是一种重要的氨基糖苷类抗生素钝化酶,从临床分离出的6株耐甲氧西林金黄色葡萄球菌(MRSA)的总DNA中克隆得到AAC(6′)-APH(2″)基因,将该基因插入质粒pET-28a中构建表达载体,然后将该重组质粒转入大肠杆菌BL21进行异源表达,在IPTG的诱导下产生大量可溶性目标重组蛋白,该重组蛋白经亲和层析分离纯化,SDS-PAGE鉴定纯度大于90%;建立了此双功能酶的体外测活方法,为建立氨基糖苷类抗生素双功能酶抑制剂筛选模型奠定基础. Bifunction enzyme AAC(6′)-APH(2″) is an important passivation enzyme of aminoglycosides(AGs).The chromosome gene encoding AG bifunctional enzyme from the 6 MRSA clinical isolates was cloned and introduced into expression plasmid pET-28a,and then was transformed into E.coli BL21(DE3).The strains produced large amounts of soluble recombinant protein under IPTG induction.The protein was purified by affinity chromatography.After purification,the purity of recombinant AAC(6′)-APH(2″) reached 90%.A method to assay the recombinant enzyme activity was developed in vitro,which laid a good basis for developing a screening model for obtaining the AAC(6′)-APH(2″) inhibitors.
出处 《上海师范大学学报(自然科学版)》 2011年第3期301-305,共5页 Journal of Shanghai Normal University(Natural Sciences)
基金 国家自然科学基金项目(30801449) 国家"重大新药创制"科技重大专项项目(2009ZX09301-007) 上海市自然科学基金项目(09ZR1430800)
关键词 氨基糖苷类抗生素 耐甲氧西林金葡菌 双功能酶 异源表达 aminoglycoside antibiotics MRSA bifunctional enzyme heterologous expression
  • 相关文献

参考文献10

  • 1张永信.氨基糖苷类抗生素的临床地位及主要品种[J].上海医药,2004,25(3):104-105. 被引量:4
  • 2徐艳,郭丽双,付英梅,张文莉,张凤民.细菌对氨基糖苷类抗生素的耐药机制[J].中国微生态学杂志,2008,20(2):191-192. 被引量:8
  • 3UDO E, GRUBB W. Transposition of genes encoding kanamycin, neomycin and streptomycin resistance in Staphylococcus aureus [ J ]. Journal of Antimicrobial Chemotherapy, 1991,27 (6) :713 - 720.
  • 4孔海深,徐根云,李雪芬,杨青,陈瑜,俞云松,周建英.耐甲氧西林金黄色葡萄球菌多重耐药基因检测[J].中华检验医学杂志,2005,28(10):1027-1029. 被引量:34
  • 5MCKAY G,THOMPSON P, WRIGHT G. Broad spectrum aminoglycoside phosphotransferase type Ⅲ from Enterococcus: overexpression, purification, and substrate specificity [ J ]. Biochemistry, 1994,33 (22) :6936 - 6944.
  • 6WILLIAMS J W, NORTHROP D. Kinetic mechanisms of gentamicin acetyltransferase I [ J ]. Biol Chem, 1978,253:5902 - 5907.
  • 7DAIGLE D M, HUGHES D W, WRIGHT G D. Prodigious substrate specificity of AAC (6')-APH (2"), an aminoglycoside antibiotic resistance determinant in enterococci and staphylococci [ J ]. Biol Chem, 1999 (6) :99 -110.
  • 8AZUCENA E, GRAPSAS I, MOBASHERY S. Properties of a bifunctional bacterial antibiotic resistance enzyme that cataly- zes ATP-dependent 2"-phosphorylation and acetyl - CoA-dependent 6'-acetylation of aminoglycosides[ J]. Am Chem Soe, 1997(119) :2317 -2318.
  • 9FERRETI'I J J, GILMORE K S, COURVALIN P. Nucleotide sequence analysis of the gene specifying the bifunctional 6'- aminoglycoside acetyltransferase 2"-aminoglycoside phosphotransferase enzyme in St reptococcus faecalis and identification and cloning of gene regions specifying t he two activities [ J ]. J Bacteriol, 1986,167 (2) :631 - 638.
  • 10BOEHR D D, DAIGLE D M, WRIGHT G D. Domain-domain interactions in the aminoglycoside antibiotic resistance en- zyme AAC (6') -APH (2") [ J ]. Biochemistry,2004,43 (30) :9846 - 9855.

二级参考文献29

  • 1Fiebelkom KR, Crawford SA, McElmeel ML, et al. Practical disk diffusion method for detection of inducible clindamycin resistance in staphylococcus aureus and coagulase-negative staphylococci. J Clin Microbiol, 2003, 41:4740-4744.
  • 2Schmitz FJ, Fluit AC, Gondolf M, et al. The prevalence of aminoglycoside resistance and corresponding resistance genes in clinical isolates of staphylococci from 19 European hospitals. J Antimicreb Chemother, 1999,43:253-259.
  • 3Ida T, Okamoto R, Shimauchi C, et al. Identification of aminoglycoside-modifying enzymes by susceptibility testing:epidemiology of methicillin-resistant Staphylococcus aureus in Japan.J Clin Microbiol, 2001,39:3115-3121.
  • 4Choi SM, Kim SH, Kim HJ, et al. Multiplex PCR for the detection of genes encoding aminoglycoside modifying enzymes and methicillin resistance among staphylococcus species. J Korean Med Sci, 2003,18:631-636.
  • 5Lim JA, Kwon AR, Kim SK, et al. Prevalence of resistance to macrolide, lincosamide and streptogramin antibiotics in Gram-positive cocci isolated in a Korean hospital. J Antimicreb Chemother ,2002, 49:489-495.
  • 6Martineau F, Picard FJ, Lansac N, et al. Correlation between the resistance genotype determined by multiplex PCR assays and the antibiotic susceptibility patterns of staphylococcus aureus and staphylococcus epidermidis. Antimicreb Agents Chemother, 2000,44:231-238.
  • 7FLUIT A C, VISSER M R, SCHMITZ F J. Molecular detection of antimicrobial resistance[ J]. Clin Microbiol Rev,2001,14:836-871.
  • 8PEREZ-MORENO M O,CARCILLA M. Mechanisms of reduced susceptibility to amoxycillin- clavulanic acid in Escherichia coli strain from the health region of Tortosa (Cafalonia, Spain) [J]. Clin Microbiol Infect,2004,10(30) :234-239.
  • 9MINGEOT-LECLERCQ M P,GLUPCZYNSKI Y,TULKENS P M. Aminoglycosides : activity and resistance [ J ]. Antimicrob Agents Chemother, 1999,43 (4) :727-737.
  • 10RATHER P N, OROSZ E, SHAW K J, et al. Characterization and transcriptional regulation of the 2'-N-acetyltransferase gene from Providencia stuartii[ J ]. J Bacteriol, 1993,175 (20) :6492-6498.

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部