期刊文献+

Solutions for Toda System on Riemann Surface with Boundary

Solutions for Toda System on Riemann Surface with Boundary
原文传递
导出
摘要 In this paper, we study the solutions for Toda system on Riemann surface with boundary. We prove a sufficient condition for the existence of solution of Toda system in the critical case. In this paper, we study the solutions for Toda system on Riemann surface with boundary. We prove a sufficient condition for the existence of solution of Toda system in the critical case.
作者 Xiao Bao ZHU
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第8期1501-1520,共20页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China (Grant No. 11001268)
关键词 Toda system Riemann surface with boundary Toda system, Riemann surface with boundary
  • 相关文献

参考文献15

  • 1Kazdan, J., Warner, F.: Curvature functions for compact 2-manifolds. Ann. of Math., 99, 14-47 (1974).
  • 2Caglioti, E., Lions, P. L., Marchioro, C., et al.: A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Comm. Math. Phys., 143, 501-525 (1992).
  • 3Caglioti, E., Lions, P. L., Marchioro, C., et al.: A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Part II. Comm. Math. Phys., 174, 229-260 (1995).
  • 4Chang, A. S. Y., Yang, P.: Conformal deformation of metrics on S2. J. Differential Geom., 23, 259-296 (1988).
  • 5Chang, A. S. Y., Yang, P.: Prescribing Gaussian curvature on S2. Acta Math., 159, 214-259 (1987).
  • 6Chen, C.-C., Lin, C.-S.: Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces. Comm. Pure Appl. Math., 55, 728-771 (2002).
  • 7Chen, W. X., Ding, W. Y.: Scalar curvature on S2. Trans. Amer. Math. Soc., 303, 365-382 (1987).
  • 8Chen, W. X., Li, C.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J., 63, 615-622 (1991).
  • 9Ding, W., Jost, J., Li, J., et al.: The differential equation △u = 8π-8πheu on a compact Riemann surface. Asian J. Math., 1, 230 -248 (1997).
  • 10Zhu, X.: △u = 4π - 4πheu on a compact Riemann surface with boundary, Unpublished.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部