期刊文献+

碳纳米管场效应管尺寸缩小特性的比较 被引量:1

Comparing of the Scaling Property of Carbon Nanotube Field Effect Transistors
下载PDF
导出
摘要 由于具有更为显著的量子隧穿效应,碳纳米管场效应管具有较硅基MOS管不同的尺寸缩小特性,同时,由于工作机理的不同,类MOS碳纳米管场效应管(C-CNFETs:Conventional MOS-like Carbon Nanotube Field Effect Transistors)的尺寸缩小特性与隧穿碳纳米管场效应管(T-CNFETs)也不尽相同。器件尺寸缩小特性研究是研究其应用前景的重要方式,而之前对碳纳米管场效应管尺寸缩小特性的研究并没考虑带间隧穿对碳纳米管场效应管尺寸缩小特性的影响。采用非平衡格林函数方法,对比研究了带间隧穿对C-CNFETs与T-CNFETs尺寸缩小特性的影响。研究结果表明两者存在较大差异、甚至截然相反的尺寸缩小特性。有利于为碳纳米管场效应管器件设计提供重要指导,以获取面积、速度、功耗之间的合理折中。 Owing to the more obvious quantum tunneling effect, Carbon Nanotubo Field Effect Transistors (CNFETs) take on different scaling property from that of silicon based Metal-Oxide-Semiconductor (MOS) transistors. The scaling properties of Conventional MOS-like Carbon Nanotube Field Effect Transistors (C-CNFETs), on the other hand, differ from those of Tunneling Carbon Nanotube Field Effect Transistors (T-CNFETs) due to different operating mechanism. As a result, study on the scaling property is one of the most important means of searching for the application potential of the device. The band-to-band tunneling, however, has not been taken into account in previous researches. A comparative study of the impact of band-to-band tunneling on the scaring property of C-CNFETs and T- CNFETs was carried out based on Non-Equilibrium Green's Function method. The research results reveal that these two kinds of CNFErrs take on different or even opposite scaling properties. The research will offer a vigorous guidance for the device design to obtain a proper trade-off among area, speed and power in application.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2011年第3期77-82,共6页 Journal of National University of Defense Technology
基金 国家863高技术资助项目(2009AA01Z114 2009AA01Z124) 湖南省研究生科研创新项目
关键词 碳纳米管场效应管 尺寸缩小特性 带间隧穿 非平衡格林函数 量子电容 CNFETs (Carbon Nanotube Field Effect Transistors) scaling property band-to-band-tunneling non-equilibriumGreen's function quantum capacitance
  • 相关文献

参考文献29

  • 1Javey A, Guo J, Wang Q, et al. Ballistic Ca.dxm Nanotube Field- Effect Transistors [J]. Nature (Iz~ndon), 2003, 424:654.
  • 2Gao B, (Xmli DC, Places B, etal. Cotunneling and One-dimmsicnnl Localiztion in Individual Disordered Single-wall Nanaotubes: of the Intristic Resistence [J]. Phys. Rev. B, 2006, 74(08):5410.
  • 3Hdme S, Tets J, Martel R, etal. Carbon as Sd:ottky Barrier Tin.stars [J]. Phys. Rev. Lett, 2002, 89(10):6801.
  • 4Heinze S, Radosavljevic M, Tersoff J, et al. Unexpected Scaling of the Performance d Carbon Nanotube Transistors [ J]. Phys. Rev. B, 2003, 68(23):5418.
  • 5Guo J, Datta S, Iamdsnron M. A Numerical Study of Scaling Issues for Schottky-Barrier Carbon Nanotube Transistors [J]. IEEE Transactions on Electron Devices, 2004, 51(2):172- 177.
  • 6Alam K, Lake RK. Dielectric Scaling of a Zem-Schouky-Barrier 5 nm Gate Carbon Nmoaube Transistor with SoarceJDrain Underl~ [J]. Journal of Applied Physics, 20(16, 100(2) : 4317.
  • 7Sishir B, Khairul A. Gate Dielectric Scaling of Top Gate Cmbon Nanoribbon on Insulator Transistors [ J ]. Journal of Applied Physics, 2008, 104(12) :4038.
  • 8Radosavljevic M, Heinze S, Tersoff J, et al. I)min Voltage Scaling in C_.argon Nanotube Transistors [ J ]. Applied Physics Letters, 2003, 83(12):2435.
  • 9Xue Y Q, Ratner M A. Sealing Analysis of Electron Transport Thnmgh Metal-Semiconducting Cadbon Nanotube Interfaces: Evolution from the Molecular Limit to the Bulk Limit [J]. Phys. Rev. B, 2004, 70(20):5416.
  • 10Purewal MS, Hong B H, Ravi A, etal. Scaling d Resistance and Electron Mean Free Path of Single-Walled Carbon Nanotubes[ J ]. Phys. Rev. Lett. 2006, 96(18) :6808.

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部