期刊文献+

关于置换因子循环布尔矩阵半群(英文)

On Semigroup of Permutation Factor Circulant Boolean Matrices
下载PDF
导出
摘要 PMn(B)表示布尔代数B={0,1}上的所有n×n置换因子循环矩阵组成的集合.PMn(B)对于矩阵乘法成为一个半群.刻画了PMn(B)中的幂等元,并给出了半群PMn(B)中的Euler-Fermat定理. Let PMn(B) denote the set of all n × npermutation factor circulant matrices over the Boolean algebra B = {0,1},then PMn(B) forms a semigroup under the usual matrix product.In this paper,all idempotents in PMn(B) are characterized,the Euler-Fermat theorem for the semigroup PMn(B) is also established.
作者 周敏娜
出处 《宁波大学学报(理工版)》 CAS 2011年第3期38-40,共3页 Journal of Ningbo University:Natural Science and Engineering Edition
关键词 布尔代数 置换因子循环矩阵 半群 幂等元 Euler-Fermat定理 Boolean algebra permutation factor circulant Boolean matrix semigroups idempotent Euler-Ferment theorem
  • 相关文献

参考文献1

二级参考文献12

  • 1Ruiz-Claeyssen J. et al.. Factor block circulant and periodic solutions of undamped matrix differential equations[J]. Math Appl Comput, 1983,3(1):81-92
  • 2Claeyssen J C R, Leul L A S. Diugonulizution und spectrul decomposition of factor block circulant matrices[J]. Linear Algebra and its Applications, 1988,99:41-61
  • 3Davis P. Circulant Matrices[M]. New York: Wiley & Sons, 1979
  • 4Jiang Zhaolin, Zhou Zhangxin. Circulant Matrices[M]. Chengdu: Chengdu Technology University Publishing Company, 1999
  • 5Stuart J L, Weaver J R. Matrices that commute with a permutation matrix[J]. Linear Algebra and its Applications, 1991,150:255-265
  • 6Jeffrey L. Stuart. Diagonally scaled permutations and circulant matrices[J]. Linear Algebra and its Applications, 1994,212/213:397-411
  • 7Cline R E. Generalized inverses of certain Toeplitz matrices[J]. Linear Algebra and its Applications,1974,8:25-33
  • 8Johnson G. A generalization of N-matrices[J]. Linear Algebra and its Applications, 1982,48:201-217
  • 9Leonard P A. Cyclic relative difference sets[J]. Amer Math Monthly, 1986,93:106-111
  • 10Adams Williamm W, Loustaunau Philippe. An introduction to GrSbner bases[J]. American Mathematical Society, 1994,3:74-85

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部