期刊文献+

非齐次散度型椭圆方程的正则性

Regularity of Nonhomogeneous Divergence Elliptic Equation
下载PDF
导出
摘要 从弱解的概念出发,经过推理计算,讨论了椭圆方程-div(A▽u)+b▽u+Vu=f弱解的一阶导数和二阶导数的积分估计,其中V,V2,|b|2∈Kato(Ω),f∈L2(Ω),从而推广了目前已有的结果. Based on the definition of the weak solution, through inference and calculating, we mainly consider the integral estimation of the elliptic equation’s weak solution in this paper. The elliptic equation takes such a form as -div(A▽u)+ b▽u+Vu = f,where V,V2,|b|2∈Kato(Ω),f∈L2(Ω).The work in this paper extends the results previously published.
出处 《宁波大学学报(理工版)》 CAS 2011年第3期45-47,共3页 Journal of Ningbo University:Natural Science and Engineering Edition
基金 国家自然科学基金(10771110) 宁波市自然科学基金(2009A610090)
关键词 弱解 Kato类 正则性 H2估计 weak solution Kato class regularity H2 estimate
  • 相关文献

参考文献10

二级参考文献14

  • 1Littman W, Stampacchia G, Weinberger H F. Regular points for elliptic equations with discontinuous coefficients[J]. Ann Scuola Norm Sup Pisa, 1963, 17(3):43-76.
  • 2Gilbarg D, Trudinger N S. Elliptic partial differential equation of second order[M]. 2nd ed. New York: Springer-Verlag, 1983.
  • 3Gruter M, Widman K O. The green function for uniformly elliptic equations[J]. Manuscripta Math, 1982, 37:303-342.
  • 4Aizenman M, Simon B. Brownian motion and Harnack's inequality for Schrodinger operators[J]. Comm Pure Appl Math, 1982, 35:209-271.
  • 5Chiarenza F, Fabes E, Garofalo N. Hamack's inequality for Schrodinger operators and the continuity of solutions [J]. Proc Amer Math Soc, 1986, 98(6):415-425.
  • 6Kurata K. Continuity and Harnack's inequality for solutions of elliptic partial differential equations of second order[J]. Indiana Univ Math Jour, 1994, 43(2): 411-440.
  • 7Fazio G D. Holder-continuity of solutions for some Schrodinger equations[J]. Rend Sem Mat Univ Padova, 1988, 79:173-183.
  • 8Chen Yemin. Holder continuity of solutions for some Schrodinger equations[J]. Journal of Zhejiang University: Sciences Edition, 2000, 27(5):498-502.
  • 9[3]Kurata K. Continuity and Harnacks inequality for solutions of elliptic portial differential Equation of second order [J]. Indiana U. Math J. , 1994,43:411~440.
  • 10[4]Littleman W,Stampacchia G, Weinberger H. Regualr points for elliptic equation with discontinuous coefficients[J]. Ann. Sc. Norm. Sup. Pisa. , 1963,17:45 ~79.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部