摘要
多智能体系统是由多个自主的智能体组成的集合,实现协调合作的首要条件就是各个多智能体达到一致。本文应用频域分析法研究了具有时滞的二阶定拓扑多智能体系统的一致性问题,得到了保证所有智能体状态达到一致的充分必要条件,并且给出了系统最大容许时滞与定拓扑图的Laplacian矩阵特征值之间的关系。最后,通过数值仿真验证了所得结论的有效性。
The multi-agent system is composed of multiply agents that are autonomous enough to operate independently.The chief condition of coordination control among agents is that all agents reach an agreement.We investigate the consensus problem of second-order multi-agent systems with fixed topology and time-delay.By the frequency domain analysis,a sufficient and necessary condition is derived that all agents reach consensus on their states and the largest tolerable delay is given to depend on the eigenvalues of Laplacian matrices of the fixed topology.Finally a simulation example is provided to show the effectiveness of our theoretical results.
出处
《计算机仿真》
CSCD
北大核心
2011年第7期26-30,共5页
Computer Simulation
基金
国家自然科学基金(60727002,60774003,60921001,90916024)
国家重点基础研究发展规划(973计划)(2005CB321902)
教育部高校博士点基金(20030006003)
国防基础研究项目(A2120061303)资助
关键词
二阶多智能体系统
一致性
定拓扑
有向图
时滞
Second-order agents systems
Consensus problem
Fixed topology
Directed graph
Time-delay