期刊文献+

空间机器人姿态稳定方法研究 被引量:2

Attitude Stabilization Methodof Space Robot
下载PDF
导出
摘要 研究机器人动态优化问题,空间机器人的动力学耦合特性会影响系统的稳定性。空间机器人由于机械运动基座产生扰动,影响姿态稳定。通过建立空间机器人的动力学模型,结合动力学耦合特性分析了空间机器人的零反作用空间。提出基于零反作用空间的基座姿态稳定方法,实现了机械臂与基座的动力学解耦。不采用反作用飞轮或反作用喷气装置,即可使空间机器人的基座姿态达到稳定,达到了节省星上能源,延长空间机器人使用寿命的目的。在Matlab上进行数值仿真实验,结果验证了方法的有效性和可行性。方法能够为空间机器人在轨操作提供理论依据。 Coupling characteristics of space robot influence the stability of the system.Considering the attitude stabilization of the space robot,the dynamic model of the space robot is established firstly,then the Reaction Null Space of the space robot is analyzed according to the coupling characteristics of the system,and the coupling dynamics of the manipulator and base is decoupled.In this paper an approach is presented to make the attitude of the base fixed based on the Reaction Null Space without using reaction wheels or thrusters,which can save the fuel of the space robot and prolong the serving time of the system.Numerical simulation experiments have been made by using Matlab and the experimental results demonstrate the validity and effectiveness of the proposed approach.This method can provide theoretical support for on-orbit operation.
出处 《计算机仿真》 CSCD 北大核心 2011年第7期177-180,共4页 Computer Simulation
基金 国家自然基金资助项目(60805034) 教育部新世纪优秀人才支持计划项目(NCET-07-0691)
关键词 空间机器人 动力学耦合 零反作用空间 姿态稳定控制 Space robot Dynamics coupling Reaction null space Attitude stabilization control
  • 相关文献

参考文献10

  • 1Xu Yangsheng, Takeo Kanade. Space Robotics: Dynamics and control[M]. Kluwer Academic Publishers,1992.
  • 2C Femandes, L umits and Z X Li. Near-optimal Nonholonomic Motion Planning For a System of Coupled Rigid Bodies[C]. IEEE Transactions on Automatic Control. 1994. 450-463.
  • 3Y Nakamura, R Mukherjee. Nonholouomic Path Planning of Space Robots via a Bidirectional Approach[ C]. IEEE transactions on ro- botics and automation, 1991,7(4) :500-508.
  • 4Panfeng Huang, Kai Chen and Yangsheng Xu. Optimal Path Plan- ning for Minimizing Disturbance of Space Robot[C]. Proceeding of IEEE Ninth International Conference on Control, Automation, Ro- botics and Vision, 2006. 139-144.
  • 5S Dubow sky, M A Tortes. Path Planning for Space Manipulators to Minimize Spacecraft Attitude Disturbance [ C]. Proc. of IEEE Int. Conf. on Robotics and Automation, 1991. 2522-2528.
  • 6M W Walker, D M Kim. Satellite stabilization using space leeches [C]. Prec. IEEE Amer. Contr. Conf, San Diego, CA, 1990. 1314-1319.
  • 7S Matunaga, T Kanzawa, Y Ohkami. Rotational motion-damper for the capture of an uncontrolled floating satellite[ J]. Cont. Eng. Practice, 2001,9(2) :199-205.
  • 8XuYangsheng and Heung-yeung Shum. Dynamic control and cou- pling of a free-flying space robot system[ J]. Joumal of Robotic Systems 1994,7( 11 ) :573-589.
  • 9D N Nenchev and K Yoshida. Impact analysis and post-impact is- sues of a free-floating space robot manipulator systems [ J ]. IEEE Transactions on Robotic and Automation, 1999,15 (3) :548-557.
  • 10D Dimitrev. Dynamics and control of Space Manipulators During a Satellite Capturing Operation [ D ]. Tohoku University, 2005.

同被引文献30

  • 1葛景华,陈力.双臂空间机器人系统动力学与关节运动的非线性反馈控制[J].福州大学学报(自然科学版),2006,34(3):370-373. 被引量:3
  • 2Putz P. Space robotics [ J ]. Reports on Progress in Physics, 2002, 65(3) : 421 -463.
  • 3Yoshida K. Engineering test satellite VII flight experiments for space robot dynamics and control : theories on laboratory test beds ten years ago, now in orbit[J]. International Journal of Robotics Research, 2003, 22(5): 321 -335.
  • 4Ogilvie A, Allport J, Hannah M, et al. Autonomous satellite servicing using the orbital express demonstration manipulator system[ C ]. International Symposium on Artificial Intelligence, Robotics and Automation in Space, Hollywood, USA, February, 2008.
  • 5Nanos K, Papadopoulos E. On the use of free-floating space robots in the presence of angular momentum [ J ]. Intel Serv Robotics, 2011, 4( 1 ) : 3 - 15.
  • 6Xu W, Liang B, Xu Y. Survey of modeling, planning, and ground verification of space robotic systems [ J ]. Acta Astronautica, 2011, 68 ( 11 ) : 1629 - 1649.
  • 7Vafa Z, Dubowsky S. On the dynamics of manipulators in space using the virtual manipulator approach [ C ]. IEEE International Conference on Robotics and Automation, Raleigh, USA, Mar, 1987.
  • 8Liang B, Xu Y, Bergerman M. Mapping a space manipulator to a dynamically equivalent manipulator [ J ]. Journal of Dynamic Systems, Measurement and Control - Transactions of the ASME, 1998, 120(1): 1-7.
  • 9Dubowsky S, Papadopoulos E. The kinematics, dynamics, and control of free-flying and free-floating space robotic systems [ J ]. IEEE Transactions on Robotics and Automation, 1993, 9 (5) : 531 - 543.
  • 10Tortopidis I, Papadopoulos E. On point-to-point motion planning for underactuated space manipulator systems [ J ]. Robotics and Autonomous Systems, 2007, 55 (2) : 122 -131.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部