期刊文献+

深度优先搜索的支持向量机参数优化算法 被引量:11

Study on Parameters Optimization of Support Vector Machines Based on DFS
下载PDF
导出
摘要 研究支持向量机参数优化问题,由于算法要求准确选择SVM参数,支持向量机在处理大样本数据集时和最优模型参数确定时,消耗的时间长、占有内存大,易获得局部最优解的难题。为了解决支持向量机存在的不足,采用深度优先搜索算法对其参数优化机机制进行改进。将向量机参数优化视成一个组合优化问题,将支持向量机模型的分类误差作为优化目标函数,采用深度优先算法对其进行求解,最后将模型应用于3个标准分类数据集。仿真结果表明,优化参数后的支持向量机加快模型的训练速度度,提高了分类的准确率,很好的解决了支持向量机参数优化难题。 Study on the problems of support vector machines parameters optimization.The prediction precision of Support vector machines model and generalization ability depend on its parameters reasonable choice.The problems of time-consuming and easy falling into the local optimal value exist in traditional support vector machine parameters optimization algorithm,and support vector machine prediction precision is low.In order to solve the problems,the paper puts forward a method based on depth first search of SVM parameters optimization method(DFS-SVM).DFS-SVM takes SVM parameters optimization as a combinatorial optimization problem and the RMSE as optimization goal,uses depth first search to select SVM parameters,and tests DFS-SVM performaces through three standard data set.Simulation experiment results show that the DFS-SVM prediction accuracy is improved and the training time is shorten greatly.It provides a new effective solution for SVM parameters optimization problem.
机构地区 西安科技大学
出处 《计算机仿真》 CSCD 北大核心 2011年第7期216-219,共4页 Computer Simulation
关键词 支持向量机 深度优先搜索 交叉验证 参数选择 Support vector machines(SVM) Depth first search Cross-validation Parameter optimization
  • 相关文献

参考文献7

二级参考文献160

  • 1Akyildiz I F,Su W,Sankarasubramaniam Y,et al.A survey on sensor networks[J].IEEE Communications, 2002,40(8 ) : 102-114.
  • 2Eschenauer L,Gligor V D.A key-management scheme for distributed sensor networks[C]//Proceedings of the 9th ACM Conference on Computer and Communications Security,2002:41-47.
  • 3Pemg H A,Song D.Random key predistribution schemes for sensor networks[C]//Proc IEEE Symp an Research in Security and Privacy,May 2003:197-213.
  • 4Liu D, Ning P.Establishing pairwise keys in distributed sensor networks[C]//Proceedings of the 10th ACM Conference on Computer and Communications Security,2003:52-61.
  • 5Camtepe S A,Yener B.Combinatorial design of key distribution mechanisms for wireless sensor networks[C]//Proceedings of the 9th European Symposium on Research in Computer Security,2004: 293-308.
  • 6Zia T A,Zomaya A Y.A secure triple-key management scheme for wireless sensor networks[C]//the Proceedings of the IEEE InfoCom 2006 Students Workshop,April 23-24,2006,Barcelona,Spain,2006.
  • 7Heinzelman W,Chandrakasan A,Balakrishnan H.Energy-efficient communication protocol for wireless microsensor networks[C]//Proc of the 33rd Annual Hawaii Int'l Conf on System Sciences.Maui: IEEE Computer Society,2000:3005-3014.
  • 8Ganesan D, Govindan R, Shenker S, Estrin D. Highly-Resilient, energy-efficient multipath muting in wireless sensor networks.Mobile Computing and Communications Review, 2002,1(2):295-298.
  • 9Braginsky D, Estrin D. Rumor routing algorithm for sensor networks. In: Raghavendra CS, ed. Proceedings of the 1st Workshop on Sensor Networks and Applications. New York: ACM Press, 2002.
  • 10Girod L, Bychkovskiy V, Elson J, Estrin D. Locating tiny sensors in time and space: A case study. In: Manoli Y, Kim KS, eds.Proceedings of the International Conference on Computer Design. Piscataway: IEEE Press, 2002. 195-204.

共引文献1442

同被引文献126

引证文献11

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部