期刊文献+

医学超声图像SRAD模型优化研究 被引量:3

Optimization of SRAD Model for Medical Ultrasound Images
下载PDF
导出
摘要 研究医学超声图像提取优化问题,超声图像斑点噪声较大,影响图像精度。为抗噪声,提出一种各向异性斑点减少模型(SRAD)的优化方法,用于减少超声图像中的斑点噪声。采用扩散方向由四个扩展为八个,再根据八个方向到中心点的距离不同赋予相应的权值,进行仿真,使图像信息得到加强的同时减少所需的迭代次数。仿真结果表明,在处理速度加快,并能够较好地保证处理后得到的图像在抑制噪声和保护图像的精度质量。 This paper proposes an optimization approach of speckle reduce anisotropic diffusion(SRAD) for the problem of larger calculating amount for the normal SRAD model in the ultrasound image speckle processing.The proposed approach modifies the diffusion directions from four to eight and assigns different weightings to each according to the distance between them and the centre point.This process enhances the texture information and,at the same time,reduces the number of iteration.The simulation experimental results show that the proposed approach is faster in speed and can ensure the processed image better in the quality of suppressing speckle and preserving image details.
出处 《计算机仿真》 CSCD 北大核心 2011年第7期290-292,304,共4页 Computer Simulation
关键词 斑点模型优化 偏微分方程 超声图像 SRAD optimization Partial differential equation Ultrasound images
  • 相关文献

参考文献8

  • 1P Perona, J Malik. Scale-space and edge detection using anisotmp - ic diffusion [ J ]. IEEE Trans on Pattern Anal Machine Intell, 1990,12(7) :629-639.
  • 2F Catte, et al. Image selective smoothing and edge detection by nonlinear diffusion[ J]. IEEE Transactions on Numerical Analysis, 1992,29(1 ) :182-193.
  • 3Yu Yong-jian, T Acton. Speckle reducing anlsotropic diffusion [ J ]. IEEE Transactions on Image Processing, 2002, 11 ( 11 ) : 1260-1270.
  • 4Bo Wang, Tan Chaowei and C Dong. Liu. 2008_Local Coherence based Fast Speckle Reducing Anisotropic Diffusion [ J ]. IEEE Trans. Computer Science, August. 5-7, 2008.
  • 5Vinayak Dutt. Thesis-Statistical Analysis of Ultrasound Echo En-velope [ D ]. Ultrasound Research Laboratory, Rochester, MN, 1995.
  • 6D L Donoho. De. noising by soft-thresholding[ J]. IEEE Transac- tions on Information Theory, 1995,41 (3) :613-627.
  • 7陈虎,周朝辉,王守尊.基于数学形态学的图像去噪方法研究[J].工程图学学报,2004,25(2):116-119. 被引量:54
  • 8Gyu-Hee Park, Hwa-Hyun Cho, Myung-Ryul Choi. A contrast enhancement method using dynamic range separate histogram e- qualization[ J J. IEEE Trans on. Consumer Electronics, 2009,54 : 1981-1987.

二级参考文献4

共引文献53

同被引文献23

  • 1丁学君,邱天爽.α稳定分布噪声环境下基于神经网络的信号检测方法[J].电讯技术,2005,45(3):34-38. 被引量:4
  • 2D Geman, G Reynolds. Constrained restoration and the recovery of discontinuities[ J]. IEEE. Trans. Pattern, Analysis and Machine Intelligence. 2009,14 ( 3 ) :367-383.
  • 3D L l)onoho, 1 M Johnstone. Ideal spatial adaptation via wavelet shrinkage[J]. Biornetric, 2010,81:425-455.
  • 4Ivana Duskunovic, Aleksandra Pizurica. Wavelet Based Denoising Technique For Ultrasonic Images[J]. IEEE, 2010,3(5) : 2662- 2665.
  • 5Lee J S. Speckle Suppression and Analysis for Synthetic Aperture Radar[J].Optical Engineering,1986,(05):636-643.
  • 6Frost V S,Stiles J A,Shanmugan K S. A Model for Radar Images and Its Application to Adaptive Digital Filtering for Multiplicative Noise[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1982,(02):157-166.
  • 7Perona P,Malik J. Scale-space and Edge Detection Using Anisotmpic Diffusion[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,(07):629-639.
  • 8Yu Yongjian,Acton T. Speckle Reducing Anlsotropic Diffusion[J].IEEE Transactions on Image Processing,2002,(11):1260-1270.
  • 9Buades A,Coil B,Morel J M. A Review of Image Denoising Algorithms,with a New One[J].Multiscale Modeling and Simulation,2005,(02):490-530.
  • 10Burt P J,Adelson E A. The Laplacian Pyramid as a Compact Image Code[J].IEEE Transactions on Communications,1983,(04):532-540.doi:10.1109/TCOM.1983.1095851.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部