期刊文献+

二次求解具有控制切换结构的动态优化问题(英文) 被引量:1

Second exploitation of dynamic optimization problems with control switching structure
下载PDF
导出
摘要 基于多级表述策略,提出了二次求解具有控制切换结构动态优化问题的数值方法。基于常用的优化方法获得初始控制结构。动态优化问题根据控制结构进行分级,每一级对应一个特定的控制弧段,进而将原问题表述为一个多级动态优化问题。基于控制向量参数化(CVP),多级动态优化问题转化为一个非线性规划(NLP)问题进行求解。控制参数和级长作为优化变量。基于Pontryagin极大值原理,构造多级伴随系统,进而获得NLP求解器所需的梯度信息。仿真实例验证了方法的有效性。 The usual direct optimization approaches can hardly obtain a "good" numerical solution for the dynamic optimization(DO)problem with control switching structure if the chosen control discretization does not properly reflect the switching structure.In this paper,by reformulating the DO problem as a multi-stage optimization problem,a second exploitation strategy is proposed for solving this problem.The potential control structure can be revealed from the first solution generated by the usual optimization approaches.Subsequently,the DO problem is partitioned as several stages,with each stage corresponding to a particular control arc.A control vector parameterization approach is applied to convert the multi-stage DO problem to a static nonlinear programming(NLP)problem.The control profiles and stage lengths act as decision variables.Based on the Pontryagin maximal principle,a multi-stage adjoint system is constructed to calculate the gradients required by the NLP solvers.Two examples are studied to demonstrate the effectiveness of this strategy.
出处 《化工学报》 EI CAS CSCD 北大核心 2011年第8期2129-2134,共6页 CIESC Journal
基金 supported by the National Natural Science Foundation of China(60974039) the National Science and Technology Major Project(2008ZX0501)~~
关键词 多级问题 动态优化 控制切换结构 伴随表述 multi-stage problem dynamic optimization control switching structure adjoint formulation
  • 相关文献

参考文献15

  • 1Banga J R, Balsa-Canto E, Moles C G, Alonso A A.Dynamic optimization of bioprocesses: efficient and robust numerical strategies [ J ]. Journal of Biotechnology, 2005, 117 (4): 407-419.
  • 2Skolpap W, Nuehprayoon S, Scharer J M, Grisdanurak N, Douglas P L. Fed-batch optimization of [-alpha]- amylase and protease producing Bacillus subtilis using genetic algorithm and particle swarm optimization [J ]. Chemical Engineering Science, 2008, 63 (16) : 4090-4099.
  • 3Sarka D. Optimization of fed-batch bioreactors using genetic algorithm: multiple control variables [J]. Computers Chemical Engineering, 2004, 28 (5) : 789-798.
  • 4Zavala V M, Flores-Tlacuahuac A, Vivaldo-Lima E. Dynamic optimization of a semi-batch reactor for polyurethane production [J]. Chemical Engineering Science, 2005, 60 (11): 3061-3079.
  • 5Simon L L, Introvigne M, Fischer U, Hungerbtihler K. Batch reactor optimization under liquid swelling safety constraint [J]. Chemical Engineering Science, 2008, 63 (3) : 770-781.
  • 6Binder T, Cruse A, Cruz Villar C A, Marquardt W. Dynamic optimization using a wavelet based adaptive control vector parameterization strategy [ J ]. Computers Chemical Engineering, 2000, 24 (2-7) : 1201-1207.
  • 7Sehlegel M, Stoekmann K, Binder T, Marquardt W. Dynamic optimization using adaptive control vector parameterization [ J ]. Computers & Chemical Engineering, 2005, 29 (8): 1731-1751.
  • 8Sehlegel M, Marquardt W. Adaptive switching structure detection for the solution of dynamic optimization problems [ J ]. Industrial & Engineering Chemistry Research, 2006, 45 (24): 8083-8094.
  • 9Schlegel M, Marquardt W. Detection and exploitation of the control switching structure in the solution of dynamic optimization problems [J]. Journal of Process Control, 2006, 16 (3): 275-290.
  • 10Vassiliadis V S, Sargent R W H, Pantelides C C. Solution of a class of multistage dynamic optimization problems ( I ) : Problems without path constraints [J]. Industrial & Engineering Chemistry Research, 1994, 33 (9): 2111-2122.

同被引文献8

  • 1Binder T,Cruse A,Cruz Villar C A,Marquardt W. Dynamic optimization using a wavelet based adaptive control vector parameterization strategy[J].Computers&Chemical Engineering,2000,24:1201-1207.
  • 2Srinivasan B,Palanki S,Bonvin D.Dynamic optimization of batch processes(Ⅰ):Characterization of the nominal solution[J].Computers&Chemical Engineering,2003,27(15):1-26.
  • 3Schlegel M, Marquardt W. Detection and exploitation of the control switching structure in the solution of dynamic optimization problems [J]. Journal of Process Control, 2006, 16 (3): 275-290.
  • 4Szymkat M,Korytowski A.Method of monotone structural evolution for control and state constrained optimal control problems//European Control Conference.University of Cambridge,UK,2003.
  • 5Li R, Teo K L, Wong K, Duan G. Control parameterization enhancing transform for optimal control of switched systems [J]. Mathematical and Computer Modeling, 2006, 43: 1393-1403.
  • 6Teo K L,Jennings L S,Lee H W J,Rehbock V.The control parameterization enhancing transform for constrained optimal control problems [J].J. Austral. Math. Soc. Ser. B,1999, 40:314-335.
  • 7Zhang Qiang(张强),Li Shurong(李树荣),Lei Yang(雷阳),Zhang Xiaodong(张晓东).Multi-stage optimization approach for polymer flooding optimal control problems//IFAC World Conference.Milan,Italy,2011.
  • 8雷阳,李树荣,张强,张晓东.一种求解最优控制问题的非均匀控制向量参数化方法[J].中国石油大学学报(自然科学版),2011,35(5):180-184. 被引量:3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部