期刊文献+

基于多项式插值的自由漂浮空间机器人轨迹规划粒子群优化算法 被引量:20

A Polynomial Interpolation Based Particle Swarm Optimization Algorithm for Trajectory Planning of Free-Floating Space Robot
下载PDF
导出
摘要 针对自由漂浮空间机器人轨迹规划问题,提出一种基于多项式插值与粒子群优化算法相结合的非完整运动规划方法。首先,通过对系统非完整约束条件进行分析,给出了以机械臂关节角耗散能为目标函数的轨迹最优控制算法;并采用高阶多项式插值方法逼近机械臂关节角轨迹,将插值多项式的系数作为优化参数,结合粒子群优化算法对关节角轨迹进行优化求解。最后,对本文提出的轨迹规划算法进行数值仿真。仿真结果表明关节角轨迹平滑连续,保证了关节角速度及关节角加速度在初始和终止状态均为零,从而验证了所提方法的有效性和可行性。 A nonholonomic motion planning methodology for Free-Floating Space Robot(FFSR) is proposed by using polynomial interpolation combined with particle swarm optimization algorithm.More specifically,under the nonholonomic constrained conditions of system,the optimal control technique is applied for FFSR trajectory planning,in which the dissipative energy of the manipulator joint angles is considered as an objective function.Moreover,the high order polynomial is used to approach the trajectories of the joint angles,and set the coefficients of the interpolation polynomial as optimization parameters.The particle swarm optimization is implemented to achieve the optimal trajectory,such that the planned joint angle trajectories are smooth and continuous,and the angular velocities and the accelerations of joints at the initial and final equal to zero.Numerical simulation results demonstrate that the proposed method is effective and available for solving the Free-Floating trajectory planning problem.
出处 《宇航学报》 EI CSCD 北大核心 2011年第7期1516-1521,共6页 Journal of Astronautics
基金 国家自然科学基金(60774062、61004072) 高等学校博士学科点专项科研基金(20070213061) 教育部留学回国人员科研启动基金 黑龙江省留学回国人员科学基金(LC08C01) 中央高校基本科研业务费专项资金(HIT.NSRIF.2009003) 哈尔滨市科技创新人才研究专项基金(2010RFLXG001)
关键词 自由漂浮 空间机器人 多项式插值 粒子群优化算法 非完整运动规划 Free-floating Space robot Polynomial interpolation Particle swarm optimization Nonholonomic motion planning
  • 相关文献

参考文献14

  • 1崔乃刚,王平,郭继峰,程兴.空间在轨服务技术发展综述[J].宇航学报,2007,28(4):805-811. 被引量:165
  • 2Dubowsky S, Vance E, Torres M. The control of space manipulator subject to spacecraft attitude control saturation limits [ C]. The NASA Conference On Space Tclerobotics, Pasadena, CA, January 31 - Feburary 2, 1989.
  • 3Dubowsky S, Torres M. Path planning for space manipul - ateors to minimize spacecraft attitude disturbances [ C ]. The IEEE International Conference on Robotics and Automation,Sacramento, USA, April 9 - 11, 1991.
  • 4Papadopoulos E, Tortopidis I, Nanos K. Smooth planning for free-floating space robots using polynomials [ C ]. The IEEE International Conference on Robotics and Automation, Barcelona, Spain, April 18 - 22, 2005 : 4272 -4277.
  • 5Tortopidis I, Papadopoulos E. Point-to-point planning methodologies for underactuated space robots [ C ]. The IEEE International Conference on Robotics and Automation, Orlando, USA, May 15- 19, 2006.
  • 6Xu W F, Li C, Wang X Q, et al. Study on nonholonomic cartesian path planning of free floating space robotic system [ J ]. Advanced Robotics, 2009, 23 ( 1 ) : 113 - 143.
  • 7Xu W F, Liu Y, Liang B, et al. Autonomous path planning and experiment study of free-floating space robot for target capturing [ J]. Journal of Intelligent and Robotic Systems, 2008, 51 (3) : 303 - 331.
  • 8Huang P F,Yan J, Xu Y S, et al. Tracking trajectory planning of space manipuXator for capturing uncontrolled spinning satellite [ C ]. The IEEE International Conference on Machatronics and Automation, Luoyang, China, June 25 -28, 2006.
  • 9Fernandes C, Gurvits L, Li Z X. Near-optimal nonholonomic motion planning for a system of coupled rigid bodies [ J ]. IEEE Transaction On Automatic Control, 1994, 39 (3) : 450 - 463.
  • 10戈新生,陈立群,刘延柱.欠驱动刚体航天器姿态运动规划的遗传算法[J].动力学与控制学报,2004,2(2):53-57. 被引量:13

二级参考文献40

  • 1李智斌,李果.航天器自主控制与智能信息处理技术[J].航天控制,2004,22(5):20-25. 被引量:6
  • 2林来兴.美国“轨道快车”计划中的自主空间交会对接技术[J].国际太空,2005(2):23-27. 被引量:24
  • 3郭继峰,王平,崔乃刚.大型空间结构在轨装配技术的发展[J].导弹与航天运载技术,2006(3):28-35. 被引量:22
  • 4[1]Crouch PE.Spacecraft attitude control and stabilization:application of geometric control theory to rigid body models.IEEE Transactions on Automatic Control,1984,29 (4):87~95
  • 5[2]Aeyels D.Stabilization by smooth feedback of the angular velocity of a rigid Body.Systems and Control Letters,1985,5:59~63
  • 6[3]Krishnan H,McClamroch NH,Reyhanoglu M.Attitude stabilization of a rigid spacecraft using two momentum wheel actuators.Journal of Guidance,Control,and Dynamics,1995,18 (2):256~263
  • 7[4]Krishnan H,Reyhanoglu M,McClamroch NH.Attitude stabilization of a rigid spacecraft using two control Torques:A nonlinear control approach based on the spacecraft attitude dynamics.Automatica,1994,30 (8):1023~1027
  • 8[5]Tsiotras P,Corless M,Longuski JM.A novel approach to the attitude control of axisymmetric spacecraft.Automatica,1995,31 (8):1099~1112
  • 9[6]Bloch AM,Krishnaprasad PS,Marsden JE,deAlvarez S.Stabilization of rigid body dynamics by internal and external torques.Automatica,1992,28 (4):745~756
  • 10[7]Walsh GC,Sastry SS.On reorienting linked rigid bodies using internal motions.IEEE Trans Robot Automat,1995,11 (1):139~145

共引文献201

同被引文献178

引证文献20

二级引证文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部