期刊文献+

雾状水幕2种常用分布函数的近似转换 被引量:1

Approximate conversion between two conventional distribution functions for water spray
原文传递
导出
摘要 上限对数正态分布(LN分布)和Rosin-Rammler分布(R-R分布)经常同时用于拟合同一种雾状水幕水滴粒径分布。该文研究这2种分布函数之间能否等价、能否近似相互转换以及转换的条件,为雾状水幕粒度试验数据分析和相关数值计算中的分布函数选择、使用和转换的进一步研究提供参考。在推导上限LN分布函数的累积体积百分比公式和粒子体积粒径分布公式的基础上,利用Euclidean空间距离评价2种函数近似程度。分析结果表明:液滴直径上限对LN分布累积体积百分数比曲线形状影响较大;虽然2种分布函数不等价,但是存在着近似转换关系;实现最优近似的转换时,LN分布的直径上限总是对应R-R分布累积体积百分比为94%时的直径。 Upper limit lognormal(LN) distribution and Rosin-Rammler(R-R) distribution functions are often used to simultaneously describe the droplet diameter distribution of the same water spray.This paper investigates the equivalence,approximation and conversion conditions of the two functions for the choice and application of these functions and the data transformation between the two functions in the data analysis and calculation.The Euclidean space distance was used to evaluate the optimum approximation of the two functions based on the derivation of LN's cumulative volume percent and volume diameter distribution.The results show that the LN distribution upper diameter limit dominates the cumulative volume curve shape and that an approximate conversion exists between the two functions with the two not being exactly equivalent.The results also show that the best approximation appears at the diameter at which the R-R distribution volume cumulative ratio is 94%.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第4期467-470,477,共5页 Journal of Tsinghua University(Science and Technology)
关键词 分布理论 Rosin-Rammler分布 上限对数正态分布 雾状水幕 近似转换 distribution theory Rosin-Rammler distribution upper limit lognormal distribution water spray approximate conversion
  • 相关文献

参考文献11

  • 1许波,时家明,汪家春,袁忠才,王甲寅.水雾遮蔽性能的计算和分析[J].红外与激光工程,2005,34(1):38-41. 被引量:31
  • 2张军,郑捷庆.液液静电雾化特性[J].化工学报,2009,60(3):620-626. 被引量:7
  • 3王雪冬,王福顺,李伟英,王君皓,孙小华.雾化喷头雾滴直径分布测试环境的研究[J].农机化研究,2008,30(7):71-73. 被引量:1
  • 4Fluent. Fluent6.3.26\help\22.12.1 Injection Types [DB/CD]. 2006.
  • 5Brown W K, Wohletz K H. Derivation of the Weibull distribution based on physical principles and its connection to the Rosin-Rammler and lognormal distributions [J]. Journal of Applied Physics, 1995, 78(4): 2758-2763.
  • 6马承伟,严荷荣,袁冬顺,崔引安.液力式雾化喷头雾滴直径的分布规律[J].农业机械学报,1999,30(1):33-39. 被引量:16
  • 7Blair D P. Curve-fitting schemes for fragmentation data [J]. Fragblast, 2004, 8(3) : 137 - 150.
  • 8张光学,刘建忠,周俊虎,叶琳,张保生,岑可法.水煤浆燃烧可吸入颗粒物分布及排放规律[J].浙江大学学报(工学版),2008,42(10):1817-1821. 被引量:3
  • 9Sanchidrian J A, Segarra P, Ouchterlony F, et al. On the accuracy of fragment size measurement by image analysis in combination with some distribution functions [J]. Rock Mechanics and Rock Engineering, 2009, 42(1) : 95 - 116.
  • 10Chin J S, Lefebvre A H. Some comments on the characterization of drop-size distribution in sprays [C]//. 3rd International Conference on Liquid Atomization and Spray Systems. London, 1985.

二级参考文献45

共引文献53

同被引文献11

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部