期刊文献+

重力水平对热毛细-浮力对流耗散结构的影响

Effect of Gravity Level on Flow Pattern of Thermocapillary-Buoyant Convection
原文传递
导出
摘要 为了了解重力水平对环形液池内热毛细-浮力对流耗散结构的影响,利用有限容积法进行了非稳态三维数值模拟,环形液池外壁被加热,内壁被冷却,流体为0.65cSt硅油,其Pr数为6.7。结果表明,在微重力条件下,流动为三维振荡流动;当重力水平增加到0.1go时,流动结构转化为沿周向运动的一组滚胞,其轴线与温度梯度方向一致;当重力水平增加到0.5go时,流型则为一组静止的滚胞;当重力水平继续增加到3go时,流动转变为稳定流动。 In order to understand the effect of gravity level on the flow pattern of thermocapillary- buoyant convection in an annular pool, a series of unsteady three-dimensional numerical simulations were carried out with finite-volume method. The pool was filled with the 0.65cSt silicone oil (Prandtl number Pr----6.7), and heated from the outer cylindrical wall and cooled at the inner wall. The simulation results show that the three-dimensional oscillatory flow appeared at micro-gravity. When g=O.lgo, the flow pattern transits extended roll cells travelling in the azimuthal direction. If the gravity level increases to 0.Sgo, the stable three-dimensional flow happened. Further, at g=3.0go, the thermocapillary-buoyant convection transits the steady axially symmetric flow.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2011年第8期1269-1272,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.50776102) 中央高校基本科研业务费资助项目(No.CDJXS10142224) 重庆大学"211工程"三期创新人才培养计划建设项目(No.S-09101)
关键词 数值模拟 流型 热毛细-浮力对流 环形液池 numerical simulation flow pattern thermocapillary-buoyant convection annular pool
  • 相关文献

参考文献11

  • 1Ostrach S. Low-Gravity Fluid Flows [J]. Ann. Rev. Fluid Mech., 1982, 14:313-345.
  • 2Benz S, Schwabe D. The Three-Dimensional Stationary Instability in Dynamic Thermocapillary Shallow Cavities [J]. Experiments in Fluids, 2001, 31:409-416.
  • 3Schwabe D. Buoyant-Thermocapillaxy and Pure Thermo- capillary Convective Instabilities in Czochralski Systems [J]. J. Crystal Growth, 2002, 237-239:1849-1853.
  • 4Schwabe D, Zebib A, Sim B C. Oscillatory Thermocap- illavy Convection in Open Cylindrical Annuli. I. Experi- ments under Microgravity [J]. J. Fluid Mech., 2003, 491: 239-258.
  • 5Sim B C, Zebib A, Schwabe D. Oscillatory Thermocapil- lary Convection in Open Cylindrical Annuli. II. Simula- tions [J]. J. Fluid Mech., 2003, 491:259-274.
  • 6LI Y R, PENG L, Akiyama Y, et al. Three-Dimensional Numerical Simulation of Thermocapillary Flow of Moder- ate Prandtl Number Fluid in Annular Pool [J]. J. Crystal Growth, 2003, 259:374-387.
  • 7LI Y R, PENG L, WU S Y, et al. Thermocapillary Con- vection in a Differentially Heated Annular Pool for Mod- erate Prandtl Number Fluid [J]. Int. J. Thermal Sciences, 2004, 43:587-593.
  • 8Burguete J, Mukolobwiez N, Daviaud F, et al. Buoyant- Thermocapillary Instabilities in Extended Liquid Lay- ers Subjected to a Horizontal Temperature Gradient [J]. Phys. Fluids, 2001, 13:2773-2787.
  • 9Li Y R, Imalshi N, Peng L, et al. Thermocapillary Flow in a Shallow Molten Silicon Pool with Czochralski Config- uration [J]. J. Crystal Growth, 2004, 266:88-95.
  • 10Kuhlmunn H C, Albensoeder S. Three-Dimensional Flow Instabilities in a Thermocapillary-Driven Cavity [J]. Phys- ical Review E, 2008, 77:036303.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部