期刊文献+

随机参数和随机资金流环境下基于二次效用函数的投资组合优化 被引量:6

Portfolio Optimization with Random Parameters and Stochastic Cash Flow for Quadratic Utility Maximization
原文传递
导出
摘要 研究完全市场下基于二次效用最大化的带有随机资金流的动态投资组合选择问题,其中假设无风险利率、股票收益率和波动率矩阵都是一致有界随机过程.通过应用线性二次控制方法和向后随机微分方程理论得到了最优投资组合的解析表达式. This paper is concerned with a dynamic portfolio selection problem with stochastic cash flow in a complete financial market for quadratic utility maximization,in which interest rate,appreciation rates and volatility coefficients are allowed to be uniformly bounded stochastic processes.The optimal portfolio in the explicit forms is constructed via linear quadratic control technique and results from backward stochastic differential equations(BSDEs) theory.
作者 常浩 荣喜民
出处 《应用数学学报》 CSCD 北大核心 2011年第4期703-711,共9页 Acta Mathematicae Applicatae Sinica
基金 天津市高等学校科技发展基金(20100821) 天津市自然科学基金(09JCYBLJC01800 075CYBJC05200)资助项目
关键词 随机参数 随机资金流 二次效用最大化 向后随机微分方程 线性二次控制 最优投资组合 random parameters stochastic cash flow quadratic utility maximization backward stochastic differential equations linear quadratic control optimal portfolio
  • 相关文献

参考文献19

  • 1Markowitz H M. Portfolio Selection. Journal of Finance, 1952, 7(1): 77-91.
  • 2Merton R C. Optimum Consumption and Portfolio Rules in a Continuous-time Model. Journal of Economic Theory, 1971, 3(4): 373-413.
  • 3Cvitanic J, Karatzas L Hedging and Portfolio Optimization under Transaction Costs: a Martingale Approach. Mathematical Finance, 1996, 6(2): 133-165.
  • 4Shreve S E, Soner H M. Optimal Investment and Consumption with Transaction Costs. The Annals of Applied Probability, 1994, 4(3): 609-692.
  • 5Li D, Ng L. Optimal Dynamic Portfolio Selection: Multi-period Mean-variance Formulation. Math- ematical Finance, 2000, 10(3): 387-406.
  • 6Zhou X Y, Li D. Continaous-time Mean-variance Portfolio Selection: a Stochastic LQ Framework. Applied Mathematics and Optimization, 2000, 42(1): 19-33.
  • 7Li X, Zhou X Y, Lim A E 13. Dynamic Mean-variance Portfolio Selection with No-shorting Constraints. SIAM Journal on Control and Optimization, 2002, 40(5): 1540-1555.
  • 8Fu C P, Lari-Lavassani A, Li X. Dynamic Mean-variance Portfolio Selection with Borrowing Con- straint. European Journal of Operational Research, 2010, 200(1): 312-319.
  • 9Lim A E B, Zhou X Y. Mean-variance Portfolio Selection with Random Parameters in a Complete Market. Mathematics of Operations Research, 2002, 27(1): 101-120.
  • 10Lim A E B. Quadratic Hedging and Mean-variance Portfolio Selection with Random an Incomplete Market. Mathematics of Operations Research, 2004, 29(1): 132-161.

同被引文献58

  • 1王秋媛,杨瑞成,刘坤会,王军.考虑存贷利差的最优消费与投资组合问题[J].系统工程学报,2010,25(1):29-35. 被引量:7
  • 2郭文旌,胡奇英.不确定终止时间的多阶段最优投资组合[J].管理科学学报,2005,8(2):13-19. 被引量:23
  • 3吉小东,汪寿阳.中国养老基金动态资产负债管理的优化模型与分析[J].系统工程理论与实践,2005,25(8):50-54. 被引量:11
  • 4杨招军,黄立宏.不同存贷利率下极大化终止时刻期望效用[J].管理科学学报,2005,8(5):50-54. 被引量:9
  • 5Sharpe W F, Tint L G. Liabilities-a new approach[J]. Journal of Portfolio Management, 1990, 16(2): 5-10.
  • 6Decamps M, Schepper A, Goovaerts M. A path integral approach to asset-liability management[J]. Physica A: Statistical Mechanics and its Applications, 2006, 363(2): 404-416.
  • 7Papi M, Sbaraglia S. Optimal asset-liability management with constraints: A dynamic programming approach[J]. Applied Mathematics and Computation, 2006, 173 (1): 306-349.
  • 8Chiu M C, Li D. Asset and liability management under a continuous-time mean-variance optimiza- tion framework[J]. Insurance: Mathematics and Economics, 2006, 39 (3): 330-355.
  • 9Xie S, Li Z, Wang S. Continuous-time portfolio selection with liability: mean-variance model and stochastic LQ approach[J]. Insurance: Mathematics and Economics, 2008, 42(3): 943-953.
  • 10Xie S. Continuous-time mean-variance portfolio selection with liability and regime switching[J]. Insurance: Mathematics and Economics, 2009, 45(1): 148-155.

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部