期刊文献+

基于监督学习的蛋白质络合物抽取方法 被引量:1

Method of Predicting Protein Complex Based on Supervised Learning
下载PDF
导出
摘要 蛋白质关系网络中存在着大量的蛋白质络合物,络合物对有利于深入探索生物细胞的组织原理和功能有着重要意义。然而传统的络合物发现算法多基于网络的拓扑结构,没有融合络合物本身的结构信息。针对这个问题,提出了监督学习的络合物发现方法,将多种能够标示络合物的信息作为特征,使用监督学习方法对样本集进行训练,将训练得到的模型应用在络合物发现算法中。实验证明,该方法能有效地从蛋白质关系网络中发现络合物。 Protein complexes are important for understanding principles of cellular organization and function. Predicting protein complexes from protein-protein interaction (PPI) networks is of great significance. Previous methods for complex prediction are usually based on topological structure without considering the structure of complexes. In this paper,a supervised learning method is used to solve this problem. The features are constructed by multiple information of complex and the model obtained by the supervised method is used in the algorithm of complexes detection. The experimental results show that the method is an effective approach to predict protein complex from protein interaction network.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2011年第2期174-179,共6页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(60673039 61070098) 国家"863"计划资助项目(2006AA01Z151) 高等学校博士学科点专项科研基金资助项目(20090041110002) 中央高校基本科研业务费专项资金资助项目(DUT10JS09) 辽宁省博士启动基金资助项目(20091015)
关键词 蛋白质关系网络 蛋白质络合物 监督学习 protein interaction network protein complex supervised learning
  • 相关文献

参考文献12

  • 1BADER G,HOUGE C. An automated method for finding molecular complexes in large protein interaction networks [J]. BMC Bioinformaties, 2003,4 : 2.
  • 2WU Min,LI Xiao-li,KWOH C K,et al. A core-attachment based method to detect protein complexes in PPI networks[J]. BMC Bioinformatics, 2009,10 : 169.
  • 3夏佞,林鸿飞,杨志豪,李彦鹏.基于扩展语义特征机器学习消歧的基因提及标准化[J].广西师范大学学报(自然科学版),2010,28(3):144-147. 被引量:1
  • 4CHEN Lei,SHI Xiao-he ,KONG Xiang-yin. Identifying protein complexes using hybrid properties[J]. Proteome, 2009, 8(11):5212-5218.
  • 5LUBOVAC Z,GAMALIELSSON J,OLSSON B. Combining functional and topological properties to identify core modules in protein interaction networks[J].Proteins, 2006,64 : 948-959.
  • 6XENARIOS I,SALWINSKI L,DUAN X,et al. DIP,the database of interacting proteins ..a research tool for studying cellular networks of protein interactions[J]. Nucleic Acids Research, 2002,30.. 303-305.
  • 7DWIGHT S,HARRIS M,DOLINSKI K,et al. Saccharomyces genome database provides secondary gene annotation using the gene ontology[J].Nucleic Acids Research, 2002,30 : 69- 7Z.
  • 8VLADIMIR N V. The nature of statistical learning theory [M ]. 2nd ed. New York .. Spring, 1999 : 171-180.
  • 9COSSOCK D, ZHANG Tong. Subset ranking using regression[C]//Proeeedings of Conference on Learning Theory (COLT). Berlin: Spring, 2006 : 605-619.
  • 10TOMITA E ,TANAKA A,TAKAHASHI H. The worst-case time complexity for generating all maximal cliques and computational experiments[J]. Theor Comput Sci,2006,363.. 28-42.

二级参考文献6

  • 1LI Yan-peng,LIN Hong-fei,YANG Zhi-hao. Incorporating rich background knowledge for gene named entity classification and recognition[J]. BMC Bioinformatics, 2009,10 ( 1 ) : 223.
  • 2SAHAMI M,HEILMAN T D. A web-based kernel function for measuring the similarity of short text snippets[C]// Proceedings of the 15th international conference on World Wide Web. New York:ACM ,2006:377-386.
  • 3LIU Hong-fang,TORII M,HU Zhang-zhi ,et al. Gene mention and gene normalization based on machine learning and online resources[C]//Proe of the Second BioCreative Challenge Workshop Madrid. Spain:CNIO,2007:135-140.
  • 4SCHUEMIE M J,JELIER R,KORS J A. Peregrine :lightweight gene name normalization by dictionary lookup[C]// Proc of the Second BioCreative Challenge Evaluation Workshop Madrid. Spain:CNIO,2007:131-133.
  • 5KUO Cheng-ju,CHANG Yu-ming,HUANG Han-sen,et al. Exploring match scores to boost precision of gene normalization[C]//Proc of the Second BioCreative Challenge Evaluation Workshop Madrid. Spain :CNIO, 2007: 161-163.
  • 6SUN Cheng-Jie WANG Xiao-Long LIN Lei LIU Yuan-Chao.A Multi-level Disambiguation Framework for Gene Name Normalization[J].自动化学报,2009,35(2):193-197. 被引量:1

同被引文献17

  • 1Deane C M ,Salwinski L,Xenarios I,et al. Protein interac- tions:two methods for assessment of the reliability of high throughput observations [J]. Molecular & Cellular Proteomics ,2002,1 (5) :349-356.
  • 2Srihari S, Ning K, Leong H W. Refining Markov clustering for protein complex prediction by incorporating core-attachment structure [ J ]. Genome Informatics Series ,2009, 23 ( 1 ) : 159-168.
  • 3Brun C, Chevenet F, Martin D, et al. Functional classifica- tion of proteins for the prediction of cellular function from a protein-protein interaction network [ J ]. Genome biolo- gy,2004,5 ( 1 ) :6.
  • 4Chua Honnian, Sung Wingkin, Wong Limsoon. Exploiting indirect neighbours and topological weight to predict pro- tein function from protein-protein interactions [J]. Bioinformatics ,2006,22( 13 ) : 1623-1630.
  • 5Liu Guimei, Wong Limsoon, Chua Honnian. Complex dis- covery from weighted PPI networks [ J ]. Bioinformatics, 2009,25 ( 15 ) : 1891-1897.
  • 6Wang Jian, Xie Dong, Lin Hongfei, et al. Identifying protein complexes from PPI networks using go semantic similarity [EB/OL]. [ 2012-10-13 ]. http: //ieeexplore. ieee. org/ xpls/abs_all, jsp? arnumber = 6120506&tag = 1.
  • 7Xenarios I, Salwinski L, Duan X J, et al. DIP, the database of interacting proteins:a research tool for studying cellular networks of protein interactions [ J ]. Nucleic acids research ,2002,30( 1 ) :303-305.
  • 8Harris M, Clark J, Ireland A, et al. The gene ontology (GO) database and -nformatics resource [ J ]. Nucleic acids research,2004,32 : D258-D261.
  • 9Wu Min, Li Xiaoli, Kwoh C K, et al. A core-attachment based method to detect protein complexes in PPI networks [ J]. BMC bioinformatics ,2009,10( 1 ) : 169.
  • 10Cossock D, Zhang Tong. Subset ranking using regression [ EB/OL]. [ 2012-10-16 ]. http: ////link. springer, com/ chapter/10. 1007% 2F11776420_44#page-1.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部