期刊文献+

一类非线性输入时滞系统自适应控制——无源化方法 被引量:1

Adaptive control for a class of input-delay nonlinear systems by a passive approach
下载PDF
导出
摘要 针对一类含输入时滞的不确定严反馈非线性系统,设计了有记忆时滞依赖型γ-无源自适应控制器.首先,在局部线性化的基础上设计了有记忆时滞依赖型γ-无源控制器.针对严反馈非线性系统各个子系统中的非线性,利用Back-stepping方法将局部γ-无源控制律进行分解,得到线性的中间虚拟控制律,在此基础上,利用神经网络补偿各子系统的非线性部分,将上述过程整合即得到系统的最终控制律.控制器的特点是针对系统中的输入时滞,反馈控制律采用有记忆的时滞依赖型控制策略,即系统的反馈控制律不仅与当前的系统状态有关,还与系统的时滞过程中的控制作用有关.这种控制方法比无记忆时滞独立型控制保守性更小.稳定性分析中,证明了闭环系统是一致终态有界稳定的. The γ-passivity delay-dependent control approach was presented for uncertain strict-feedback nonlinear systems with input-delay.First,the delay-dependent γ-passivity controller for the local linearization section of the nonlinear model was designed.Then,a γ-passivity control law of a local linear model was decomposed as the virtual control of sub-systems by the backstepping approach.In order to compensate for the nonlinear dynamics,an adaptive neural model was proposed.The design procedure of whole systems was regarded as a combination of a local γ-passivity control and adaptive neural network compensation techniques.One important feature of the presented scheme is that the controller with input history feedback had a lower conservation level than the ones without memory.Stability analysis implies that the closed-loop system is ultimately uniformly bounded.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2011年第2期188-193,共6页 Journal of Harbin Engineering University
基金 国家自然科学基金资助项目(60804009 60704004) 教育部高等学校博士点专项基金资助项目(20070217034) 哈尔滨工程大学基础研究基金资助项目(HEUFT05062)
关键词 严反馈非线性系统 输入时滞 γ-无源 BACKSTEPPING方法 神经网络 strict-feedback nonlinear system input delay γ-passive backstepping neural networks
  • 相关文献

参考文献10

  • 1KANELLAKOPOULOS L, KOKOTOVIC P V, MORSE AS. Systematic design of adaptive controllers for feedback lin- earizable systems [J]. IEEE Transactions on AutomaticControl, 1991, 36(11) : 1241-1253.
  • 2YEH P C, KOKOTOVIC P V. Adaptive control of a class of nonlinear discrete-time systems [J]. Int J Control, 1995,62(2): 303-324.
  • 3JOSE A R, RODOLFO S, AMERICA M. Cascade control for a class of uncertain nonlinear systems: a backsteppingapproach [J]. Chemical Engineering Science, 2000, 55(16) : 3209-3221.
  • 4GONG J Q, YAO B. Neural network adaptive robust control of nonlinear systems in semi-strict feedback form [J]. Auto-matica, 2001, 37(8) : 1149-1160.
  • 5SU W, XIE L. Robust control of nonlinear feedback passive systems[J]. Systems & Control Letters, 1996, 28(2) : 85-93.
  • 6DONG Yue. Robust stabilization of uncertain systems with unknown input delay [J]. Automatica, 2004, 36 (2) : 331-336.
  • 7MAGDI S M, MOHAMED Z. Passive control synthesis for uncertain systems with muhiple-state delays[J]. Computersand Electrical Engineering,2002, 28 (3) : 195-216.
  • 8KENAN E, ZIGANG P, KOKOTOVIC P V. Locally optimal and robust backstepping design [J]. IEEE Trans on Auto-matie Control,2002, 45 (2) : 260-271.
  • 9ZHANG T, GE S S, HANG C C. Adaptive neural network control for strict-feedback nonlinear systems using backstep-ping design[J]. Automatica, 2000, 36(12): 1835-1846.
  • 10WANG D, HUANG J. Adaptive neural network control for a class of uncertain nonlinear systems in pure-feedbackform[J]. Automatica, 2002, 38(8): 1365-1372.

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部