期刊文献+

序列凸化技术(SCM)及其在大系统优化技术中的应用 被引量:3

SEQUENTIAL CONVEXIFYING METHOD (SCM) WITH APPLICATION TO OPTIMIZATION AND CONTROL
下载PDF
导出
摘要 在大系统稳态递阶优化与控制中,关联平衡法(IBM)是十分重要的方法。但有许多实际问题不能直接应用IBM。本文提出一种新的目标凸化方法——序列凸化技术(SCM),它可以对大部分不能应用IBM的问题进行凸化,使凸化后的问题可以用IBM来求解。与增广Lagrangian方法不同,SCM在凸化中保持了目标可分性,从而给分解带来很大的方便。本文证明了SCM的收敛性,给出了收敛速度的估界。并指出,对于具有凸目标(不必严格凸)的问题来说,SCM的收敛比可任意调节。 In the hierarchical optimization and control of large scale steady-state systems, the Interaction Balance Method (IBM) is of great importance. Unfortunately, however, many practical problems cannot be solved directly with IBM. This paper introduces a new objective-convexifying techinique Sequential Convexifying Method (SCM), which turns most of IBM unsolvable problems into solvable ones. Being different from the Augmented Lagrangian Method, SCM maintains the separability of the objective in the convexification, which has eased the task of decomposition significantly. The main idea of SCM is to approximate the original problem by a sequence of convex programming problems, the limit of the solution sequence approaches to the optimum solution of the original problem. A convergence proof of SCM as well as the estimation of the convergence rate is presented, and it is indicated that the convergence ratio of SCM can be made arbitrarily small in the case of convex problem (of course, strictly convex is not necessary).
作者 林杰 万百五
出处 《系统工程学报》 CSCD 1990年第1期50-63,共14页 Journal of Systems Engineering
  • 相关文献

参考文献2

  • 1林杰,1986年
  • 2刘智勇,1986年

同被引文献7

  • 1焦宝聪,万百五.可分非凸稳态大系统凸化方法研究[J].西安交通大学学报,1993,27(3):81-89. 被引量:2
  • 2Lasdon L S. Optimization theory for large scale system[M]. London:Macmillan Company,1975.
  • 3Bertsekas D P. Constrained optimization and Lagrange multiplier methods[M]. Academic Press,1982.
  • 4Tanikawa A,Mukai H. A new techinque for nonconvex primal-dual decomposition of a large scale separable optimization problem[J]. IEEE Transaction on automatic control,1985,30(2):133~143.
  • 5Tatjewski P,Engelmann B. Two level primal-dual decomposition technique for large scale nonconvex optimization problems with constraints[J]. Journal of Optimization Theory and Applications,1996,88(1):177~196.
  • 6Li Duan. Zero duality gap for a class of nonconvex optimization problems[J]. Journal of Optimization Theory and Applications,1995,85(2):309~327.
  • 7Li Duan. Convexification of noninferior froniter[J]. Journal of Optimization Theory and Applications,1996,88(1):177~196.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部