期刊文献+

肾小管上皮细胞与内皮细胞在TiO2纳米管上种植的对比 被引量:1

Comparison of kidney tubular epithelial cells and endothelial cells grown on titania nanotubes
原文传递
导出
摘要 目的观察猪肾小管t皮细胞(LLC—PKl)和人脐静脉内皮细胞(ECV304)在TiO2纳米管阵列上的黏附及生长状况,为构建微型化的生物人工肾提供实验依据。方法采用阳极氧化法制备4种不同管径的纳米管材料,将每种材料分别经未退火光照、退火未光照及退火光照处理,共计12组,分别将两种细胞种植在12组材料上,利用荧光显微镜观察并比较两种不同细胞在同种材料上的黏附及生长状况。采用MTF检测不同管径上两种细胞的活性及70nm管径上两种细胞的增殖情况。结果两种细胞在TiO2纳米管上的黏附及增殖情况基本一致,综合考虑在管径为70nm、未光照的锐钛矿型TiO2纳米管上的黏附情况最佳,细胞活性最高。LLC—PKl细胞在该材料上的吸光度值随种植时间的延长越来越大,且任意时间点的吸光度值明显高于纯钛片对照组。ECV304细胞在该材料上的吸光度值随种植时间的延长也越来越大,只是吸光度值较纯钛片对照组低。结论单独种植两种细胞时,肾小管上皮细胞在TiO2纳米管上的黏附及增殖活性均很高,而内皮细胞在纳米管上的黏附率较低,且增殖较缓慢,表明TiO2纳米管有利于上皮细胞的生长,而不利于内皮细胞的生长。 Objective To observe the adhesion and growth of LLC-PK1 cells and ECV304 cells on titania nanotube arrays, and provide evidence for construction of miniaturation bioartificial kidney. Methods Four different diameters nanotube materials were prepared by anodic oxidation, each material was processed by unannealed and with UV irradiation, annealed and without UV irradiation, annealed and with UV irradiation, respectively, which had 12 groups totally, then two kinds of cells were separately grown on the 12 materials. The adhesion and growth of the two kinds of cells were studied under a fluorescence microscope. MTT assay was used to test the activity of two kinds of cells on different diameters and the proliferation of two kinds of cells on 70 nm diameters. Results The adhesion and proliferation of two kinds of cells on TiO2 nanotube arrays were basically consistent, both on anatase TiO2 nanotubes with 70 nm diameter but without UV irradiation showed the optimal adhesion and activity. The activities of LLC-PK1 cells and ECV304 cells were both increased with time extended, while the absorbance of ECV304 cells washigher on pure Ti film than on titania nanotube. Conclusion TiO2 nanotube is beneficial to LLC-PK1 cells, but is unfavorable for ECV304 cells when they grow alone.
出处 《中华肾脏病杂志》 CAS CSCD 北大核心 2011年第7期525-529,共5页 Chinese Journal of Nephrology
基金 国家自然科学基金(30970717,20873048) 高等学校博士学科点专项科研基金(200804871011) 中央高校基本科研业务费基金HUST(2010MSI13)
关键词 人工皮细胞 内皮细胞 纳米管 细胞种植 细胞活性 Kidney, artificial Epithelial cells Endothelial cells Nanotubes,Titanium Cell implantation Cell viability
  • 相关文献

参考文献17

  • 1黄大伟,傅博,陈香美,刘维萍,汪杨.细胞混合种植法构建生物人工肾小管的初步研究[J].中国药物与临床,2008,8(3):165-167. 被引量:8
  • 2Fissell WIt, Dulmisheva A, Ehlridge AN, et al. High- performance silicon nanopore hemofiltration me, nlbranes. J Memb Sci, 2009, 326: 58-63.
  • 3Conltqius TW, Apel PY+ Schiedt B, et al. Investigation of Ilanopore evolution in ion track-etched polycarlonatemembranes. Nucl lnstr Methods Phys Res, 2007, 265: 553- 557.
  • 4Paulose M, Prakasam H, Varghese O, el al. TiO2 nanotube arrays of 1000 nun length by anodizati,m of titanium foil: phenol red diffusiml. J Phvs Chem. 2007, 111: 14992- 14997.
  • 5Prakasam HE, Shankar K, Paulose M, el al. A benchmark tor TiO2 nanotttbe array growth by anodization. J Phys Chem C, 2007, 111: 7235-7241.
  • 6Popat K. Leoni L, Grimes C, et al. Influence of engineered titania nanotubular surfaces on bmle cells. Biomaterials, 2007, 28: 3188-3197.
  • 7Brammer KS, Oh S, Gallagher JO, et al. Eham:ed cellular mobility guided by TiO2 nanotube surfaces. Nano Lett, 2008, 8: 786-793.
  • 8Ainslie KM, TAO SL Popat KC, e,t al. hi vitroinflammatory respponse of nanostrtured titania, sillonoxide, and polycaprolaclone. J Biomed Mater Res A, 2009.91: 647-655.
  • 9李广忠,张健,张文彦,康新婷,李亚宁,贺卫卫,汤慧萍.TiO_2纳米管阵列膜的制备及结构研究[J].稀有金属材料与工程,2009,38(A03):311-315. 被引量:4
  • 10Paulose M, Lily P, Grimes CA, el al. Fabricalion of meehanieally robusl, large area, polyelwstalline nanotuhttlar/ porous TiO2 memla'anes. J Memb Sci, 2008, 319: 199-205.

二级参考文献49

共引文献18

同被引文献28

  • 1Sun I F, Lee S S, Lin S D, et al. Continuous arteriovenous hemodialysis and continuous venovenous hemofiltration in burn patients with acute renal failure[J]. Kaohsiung Journal of Medical Sciences, 2007, 23(7): 344-351.
  • 2Zobel G, Rodl S, Urlesberger B, et al. Continuous renal replacement therapy in critically ill patients[J]. Kidney Internation, 1998, 66: 169-173.
  • 3Humes H D, Mackay S M, Funke A J, et al. Tissue engineering of the bioartificial renal tubule assist device: in vitro transport and metabolic characteristics[J]. Kidney Internation, 1999, 55: 2502-2514.
  • 4Ozgen N, Terashima1 M, Aung T, et al. Evaluation of long-term transport ability of a bioartificial renal tubule device using HK-2 cells[J]. Nephrol Dial Transplant, 2004, 19: 2198-2207.
  • 5Humes H D, Mackay S M, Funke A J, et al. Tissue engineering of the bioartificial renal tubule assist device: in vitro transport and metabolic characteristics[J]. Kidney Internation, 1999, 55: 2502.
  • 6Humes H D. The bioartificial renal tubule: Prospects to improve supportive care in acute renal failure[J]. Renal Fail, 1996, 18(3): 405-408.
  • 7Humes H D, Buffington D A, Mackay S M, et al. Replacement of renal function in uremic animals with a tissue-engineered kidney[J]. Nature Biotechnology, 1999, 17: 451-455.
  • 8Fissell W H, Lou L, Abrishami S, et al. Bioartificial kidney ameliorates gram-negative bacteria-induced septic shock in uremic Animals[J]. Journal of the American Society of Nephrology, 2003, 14(2): 454-461.
  • 9Humes H D, Buffington D A, Lou L, et al. Cell therapy with a tissue-engineered kidney reduces the multiple-organ consequences of septic shock[J]. Critical Care Medicine, 2003, 31(10): 2421.
  • 10Humes H D, Fissell W H, Tiranathanagul K. The future of hemodialysis membranes[J]. Kidney International, 2006, 69(7): 1115-1119.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部