期刊文献+

基于压缩感知的线性调频雷达成像 被引量:4

LFM Radar Imaging Based on Compressive Sensing
下载PDF
导出
摘要 在经典的压缩感知理论中,最常用的测量矩阵是高斯随机矩阵和伯努利随机矩阵,它们具有最优的约束等容性质(R IP).与其他测量矩阵相比,精确重建同样的稀疏信号所需的采样数最少。然而完全的随机性导致它们在具体工程应用中受到限制,同时大大增加了重建算法的时间和空间复杂度。基于统计约束等容性质(StR IP)和确定性测量矩阵理论提出一种基于线性调频信号的压缩感知雷达成像方法,利用雷达发射的线性调频信号来构造测量矩阵,并用仿真实验证明了利用该测量矩阵可以很好地实现稀疏信号的重建。 In the classical compressive sensing theory,the most widely used sensing matrices are Gaussian and Bernoulli random matrices,which have optimal Restricted Isometry Property(RIP) and the number of samples needed for accurate reconstruction of sparse signals is minimal comparing with other types of sensing matrix.However,the randomness limited their use in practical engineering applications,and it also has a negative impact on the complexity,in both time and space,of reconstruction algorithms.A CS radar imaging method by transmitting Linear Frequency Modulated(LFM) signal is proposed based on the theory of StRIP and deterministic sensing matrices.The sensing matrix is constructed using the LFM signal,and the 1D simulation result show that this kind of deterministic sensing matrix works well for sparse signal reconstruction.
出处 《科学技术与工程》 2011年第19期4483-4486,共4页 Science Technology and Engineering
关键词 压缩感知 雷达成像 线性调频信号 统计约束等容性质 确定性测量矩阵 Compressive Sensing(CS) radar imaging Linear Frequency Modulated(LFM) SignalStRIP deterministic sensing matrix
  • 相关文献

参考文献10

  • 1Candes E J. Compressive sampling. In: Proceedings of the International Congress of Mathematicians, 2006 ;3:1433- 1452.
  • 2Donoho D. Compressed sensing, information theory. IEEE Transac- tions on, 2006, 52(4) :1289-1306.
  • 3Baraniuk R, Steeghs P. Compressive radar imaging. IEEE Radar Conference, Waltham, Massachusetts, April 2007 : 1 28-133.
  • 4Gurbuz A C, McClellan J H, Scott W R, et al. A compressive sens- ing data acquisition and imaging method for stepped frequency GPRs. signal processing, IEEE Transactions,2009 ;57 (7) :2640-2650.
  • 5Gurbuz A C, McClellan J H, Scott W R. Compressive sensing for subsurface imaging using ground penetrating radar. Signal Process- ing, 2009 ;89 ( 10 ) : 1959-1972.
  • 6Applebaum L, Howard S, Searle S, et al. Chirp sensing codes: de- terministic compressed sensing measurements for fast recovery. Ap- plied and Computational Harmonic Analysis, 2009 ;26 (2) :283-290.
  • 7Calderbank R, Howard S, Jafarpour S. Construction of a large class of dcterministic sensing matrices that satisfy a statistical isometry. Se- lected Topics in Signal Processing. IEEE Journal, 2010; 4 (2): 358-374.
  • 8Tropp J A. On the conditioning of random subdictionaries. Applied Computed Harmonic Analysis, 2008 ;25 : 1-24.
  • 9Wakin M B, Park J Y, Yap H L, et al. Concentration of measure for block diagonal measurement matrices. IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), 2010:3614-3617.
  • 10Baraniuk R, Baraniuk R, Davenport M,et al. A simple proof of the restricted isometry property for random matrices. IEEE Transactions on Information Theory ,2010 ;56 (1) :520-544.

同被引文献27

  • 1费鹏,方维海,温鑫,年丰,黄培康.用于人员安检的主动毫米波成像技术现状与展望[J].微波学报,2015,31(2):91-96. 被引量:20
  • 2王迪,雷武虎,高晓平.星载SAR无源干扰分析[J].舰船电子对抗,2007,30(5):23-26. 被引量:1
  • 3David L Donoho. Compressed Sensing [ J ]. IEEE Trans- actions on information theory, 2006, 52(4) : 1289-1306.
  • 4E Candes, T Tao. Near-Optimal Signal Recovery From Random Projections : Universal Encoding Strategies? [ J ]. IEEE Transactions on information theory, 2006, 52 ( 12 ) : 5406-5425.
  • 5Duarte M, Davenport M. Single-pixel imaging via com- pressive sampling [ J ]. IEEE Signal Processing Magazine, 2008, 25(2) : 83-91.
  • 6Kirolos S, Laska J. Analog-to-information conversion via random demodulation[ C]//Proceedings of the IEEE Dal- las Circuits and Systems Workshop on Design, Applications,Integration and Software. Richardson, USA : IEEE, 2006 : 71 -74.
  • 7Baraniuk R, Steeghs Y. Compressive radar imaging [ C ]//Proc. 2007 IEEE Radar Conf. Boston : MA. 2007 : 128-133.
  • 8Sagar Shah, Yao Yu, Athina Petropulu. Step-frequency radar with compressive sampling ( SFR- CS ) [ C ]//IEEE In- ternational Conference on Acoustics, Speech and Signal Pro- cessing. 2010 : 1686-1689.
  • 9Guochao Lao, Wei YE, Hang Ruan. Retransmitted Jam- ming Method to LFM Radar Based on Compressed Sensing [ C ]//2"4 International Workshop on Compressed Sensing ap- plied to Radar. Bonn, Germany, 2013.
  • 10徐秀丽,童广德,张元,陈奇平,赵宇.近场扫描架三维SAR成像处理技术[J].微波学报,2010,26(S2):84-87. 被引量:3

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部