期刊文献+

The H_∞ synchronization of nonlinear Bloch systems via dynamic feedback control approach

The H_∞ synchronization of nonlinear Bloch systems via dynamic feedback control approach
下载PDF
导出
摘要 We consider an H∞ synchronization problem in nonlinear Bloch systems. Based on Lyapunov stability theory and linear matrix inequality formulation, a dynamic feedback controller is designed to guarantee asymptotic stability of the master-slave synchronization. Moreover, this controller reduces the effect of an external disturbance to the H∞ norm constraint. A numerical example is given to validate the proposed synchronization scheme. We consider an H∞ synchronization problem in nonlinear Bloch systems. Based on Lyapunov stability theory and linear matrix inequality formulation, a dynamic feedback controller is designed to guarantee asymptotic stability of the master-slave synchronization. Moreover, this controller reduces the effect of an external disturbance to the H∞ norm constraint. A numerical example is given to validate the proposed synchronization scheme.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第7期101-106,共6页 中国物理B(英文版)
基金 Project supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education,Science and Technology (Grant No.2010-0009373)
关键词 H∞ synchronization Bloch system dynamic control linear matrix inequality H∞ synchronization, Bloch system, dynamic control, linear matrix inequality
  • 相关文献

参考文献25

  • 1Chen G and Dong X 1998 From Chaos to Order (Singa- pore: World Scientific).
  • 2Mosekilde E, Mastrenko Y and Postnov D 2002 Chaotic Synchronization. Application for Living Systems (Singa- pore: World Scientific).
  • 3Ott E, Grebogi C and Yorke J A 1990 Phys. Rev. Lett. 64 1196.
  • 4Pyragas K 1992 Phys. Left. A 170 421.
  • 5Lee T H and Park J H 2009 Chin. Phys. Lett. 26 090507.
  • 6Lu J, Yu X and Chen G 2004 Physica A 334 281.
  • 7Lu J and Chen G 2005 IEEE Trans. Aurora. Contr. 50 841.
  • 8Park J H 2005 Chaos Solitons Fractals 23 1049.
  • 9Pecora L M and Carroll T L 1990 Phys. Rev. Lett 64 821.
  • 10Carroll T L and Pecora L M 1991 IEEE Trans. Circ. Syst. I 38 453.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部