摘要
This paper presents a novel in-plane photonic crystal channel drop filter. The device is composed of a resonant cavity sandwiched by two parallel waveguides. The cavity has two resonant modes with opposite symmetries. Tuning these two modes into degeneracy causes destructive interference in bus waveguide, which results in high forward drop efficiency at the resonant wavelength. From the result of numerical analysis by using two-dimensional finite-difference time-domain method, the channel drop filter has a drop efficiency of 96% and a Q value of over 3000, which can be used in dense wavelength division multiplexing systems.
This paper presents a novel in-plane photonic crystal channel drop filter. The device is composed of a resonant cavity sandwiched by two parallel waveguides. The cavity has two resonant modes with opposite symmetries. Tuning these two modes into degeneracy causes destructive interference in bus waveguide, which results in high forward drop efficiency at the resonant wavelength. From the result of numerical analysis by using two-dimensional finite-difference time-domain method, the channel drop filter has a drop efficiency of 96% and a Q value of over 3000, which can be used in dense wavelength division multiplexing systems.
基金
Project supported by the National Natural Science Foundation of China (Grant Nos.10774195,U0834001,and 10974263)
the Ministry of Education,China (Grant No.309024)
the Program for New Century Excellent Talents in University,China
the National Basic Research Program of China (Grant No.2010CB923201)