期刊文献+

Transport properties through double-magnetic-barrier structures in graphene

Transport properties through double-magnetic-barrier structures in graphene
下载PDF
导出
摘要 We study electrons tunneling through a double-magnetic-barrier structure on the surface of monolayer graphene. The transmission probability and the conductance are calculated by using the transfer matrix method. The results show that the normal incident transmission probability is blocked by the magnetic vector potential and the Klein tunneling region depends strongly on the direction of the incidence electron. The transmission probability and the conductance can be modulated by changing structural parameters of the barrier, such as width and height, offering a possibility to control electron beams on graphene. We study electrons tunneling through a double-magnetic-barrier structure on the surface of monolayer graphene. The transmission probability and the conductance are calculated by using the transfer matrix method. The results show that the normal incident transmission probability is blocked by the magnetic vector potential and the Klein tunneling region depends strongly on the direction of the incidence electron. The transmission probability and the conductance can be modulated by changing structural parameters of the barrier, such as width and height, offering a possibility to control electron beams on graphene.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第7期405-409,共5页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant No.10974043) the Natural Science Foundation of Hebei Province of China (Grant No.A2009000240)
关键词 transmission probability CONDUCTANCE double-magnetic-barrier GRAPHENE transmission probability, conductance, double-magnetic-barrier, graphene
  • 相关文献

参考文献26

  • 1Katsnelson M I, Novoselov K S and Geim A K 2006 Nature Phys. 2 620.
  • 2Silvestrov P G and Efetov K B 2007 Phys. Rev. Lett. 98 016802.
  • 3Cheianov V V and Falko V I 2006 Phys. Rev. B 74 041403 disorder.
  • 4Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666.
  • 5Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201.
  • 6Berger C, Song Z M, Li X B, et al., 2006 Science 312 1191.
  • 7Jin Z F, Tong G P and Jiang Y J 2009 Acta Phys. Sin. 58 8537 (in Chinese).
  • 8Bai C X and Zhang X D 2007 Phys. Rev. B 76 075430.
  • 9Pereira Jr J M, Mlinar V and Peeters F M 2006 Phys.Rev. B 74 045424.
  • 10Li Q, Cheng Z G, Li Z J, Wang Z H and Fang Y 2010 Chin. Phys. B 19 097307.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部