期刊文献+

二阶脉冲微分方程积分边值问题多个非负解的存在性 被引量:3

Multiple Nonnegative Solutions of Boundary Value Problems for the Second Order Impulsive Differential Equation with Integral Boundary Conditions
下载PDF
导出
摘要 利用不动点定理,通过构造3个泛函,研究一类非线性项中含有一阶导数的二阶脉冲微分方程积分边值问题多个非负解的存在性.在较弱的条件下,得到了该脉冲边值问题具有3个非负解的多解定理. With the aid of the fixed point theorem in a cone,we studied the existence of multiple nonnegative solutions to a type of the boundary value problems of second-order impulsive differential equations with integral boundary conditions and with the nonlinear term containing the first-order derivative by constructing three functional.The theorem for the existence of at least three nonnegative solutions was obtained under the weaker conditions.
作者 贾梅 刘锡平
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2011年第4期594-600,共7页 Journal of Jilin University:Science Edition
基金 上海市教委科研创新基金重点项目(批准号:10ZZ93)
关键词 脉冲 边值问题 积分边界条件 不动点定理 非负解 impulse boundary value problems integral boundary conditions fixed point theorem nonnegative solutions
  • 相关文献

参考文献15

  • 1Lakshmikantham V, Bainov D, Simeonov P. Theory of Impulsive Differential Equations [ M ]. Singapore: World Scientific, 1989.
  • 2Samoilenko A M, Perestyuk N A. Impulsive Differential Equation [ M ]. Singapore: World Scientific, 1995.
  • 3Nieto J J, Rodrtguez-L6pez R. Boundary Value Problems for a Class of Impulsive Functional Equations [ J ]. Comput Math Appl, 2008, 55(12): 2715-2731.
  • 4汤宇,李艳,苑成军.奇异二阶脉冲微分方程边值正解的存在唯一性[J].黑龙江大学自然科学学报,2010,27(3):351-353. 被引量:3
  • 5ZHAO Wen-cai, MENG Xin-zhu. Impulsively Vaccinating SIRS Epidemic Model with Logistic Death Rate [ J ]. Journal of Jilin University: Science Edition, 2009, 47(6): 1165-1171.
  • 6Jankowski T. Positive Solutions to Second Order Four-Point Boundary Value Problems for Impulsive Differential Equations [J]. Appl Math Comput, 2008, 202(2) : 550-561.
  • 7Kaufmann E R, Kosmatov N, Raffoul Y N. A Second-Order Boundary Value Problem with Impulsive Effects on an Unbounded Domain [ J ]. Nonlinear Anal : Theory, Methods & Applications, 2008, 69 (9) : 2924-2929.
  • 8JIA Mei LIU Xi Ping.Three Nonnegative Solutions of Three-Point Boundary Value Problem for Second-Order Impulsive Differential Equations[J].Journal of Mathematical Research and Exposition,2008,28(3):567-574. 被引量:6
  • 9FENG Mei-qiang, DU Bo, GE Wei-gao. Impulsive Boundary Value Problems with Integral Boundary Conditions and One-Dimensional p-Laplacian [ J ]. Nonlinear Anal : Theory, Methods & Applications, 2009, 70 (9) : 3119-3126.
  • 10Rachunkov~i I, Tomecek J. Impulsive BVPS with Nonlinear Boundary Conditions for the Second Order Differential Equations without Growth Restrictions [ J ]. J Math Anal Appl, 2004, 292 (2) : 525-539.

二级参考文献11

  • 1SongChangxiu,WengPeixuan.EXISTENCE OF POSITIVE SOLUTIONS FOR p-LAPLACIAN SINGULAR BOUNDARY VALUE PROBLEMS OF FUNCTIONAL DIFFERENTIAL EQUATION[J].Applied Mathematics(A Journal of Chinese Universities),2005,20(1):51-58. 被引量:5
  • 2FU Xilin, YAN Baoqiang, LIU Yansheng. Introdution of Impulsive Differential Equations System [M]. Beijing: Science Press, 2005 .
  • 3GUO Dajun, LIU Xinzhi. Multiple positive solutions of boundary-value problems for impulsive differential equations [J]. Nonlinear Anal., 1995, 25(4): 327-337.
  • 4AGARWAL R P, O'REGAN D. A multiplicity result for second order impulsive differential equations via the Leggett Williams fixed polnt theorem [J]. Appl. Math. Comput., 2005, 161(2): 433-439.
  • 5HE Zhimin, GE Weigao. Monotone iterative technique and periodic boundary value problem for first-order impulsive functional differential equations [J]. Acta Math. Sinica (Chin. Ser.), 2005, 48(1): 171-176.
  • 6ZHANG Fengqin, MA Zhi'en, LI Meili. Non-homogeneous boundary value problems for first-order impulsive differential equations [J]. Gongeheng Shuxue Xuebao, 2005, 22(1): 40-46.
  • 7QI Shishuo, WANG Jianguo. Three-point boundary value problems for impulsive integro-differential equations in Banach spaces [J]. Acta Math. Sinica (Chin. Ser.), 2003, 46(6): 1189-1198.
  • 8GUO Dajun, SUN Jingxian, LIU Zhaoli. Functional Method for Nonlinear Ordinary Differential Equation [M]. Ji'nan: Shandong Science and Technology Press, 1995.
  • 9LEGGETT R W, WILLIAMS L R. Multiple positive fixed points of nonlinear operators on ordered Banach spaces [J]. Indiana Univ. Math. J., 1979, 28(4): 673-688.
  • 10苑成军,文香丹.奇异二阶连续和离散边值问题正解的存在唯一性[J].数学的实践与认识,2008,38(19):173-180. 被引量:4

共引文献7

同被引文献37

  • 1谢胜利.Banach空间二阶非线性脉冲积分-微分方程初值问题[J].数学物理学报(A辑),2007,27(1):138-145. 被引量:13
  • 2R. E. O' Malley. Give your ODEs a singular perturbation [ J ]. J. Math. Anal. Appl. , 251 (2000).
  • 3J.H. Shen, W.B. Wang. Impulsive boundary value problems with nonlinear boundary conditions [ J ]. Nonlinear Anal. , 69 (2008) :4055 - 4062.
  • 4T. Jankowski. Existence of solutions for second order impulsive differential equations with deviating arguments [ J ]. Nonlinear Anal. ,67 (2007) : 1764 - 1774.
  • 5X. X. Yang, J. H. Shen. Periodic boundary value problems for second - order impulsive equations [ J ]. J. Comp. Appl. Math. , 209(2007) :176 - 186.
  • 6W. Ding, J. R. Mi, M. A. Han. Periodic boundary value problems for the first order impulsive functional differential equations [J]. Appl. Math. Comp. ,165(2005) :433 -446.
  • 7X.Y. Wang, Y.L. Jiang. A general method for solving singular perturbed impulsive differential equations with two - point boundary conditions [ J ]. J. Comp. Appl. Math., 171 (2005) :775 - 806.
  • 8张雅婧,张凤琴.一类二阶微分系统边值问题解的存在性[J].数学的实践与认识,2007,37(20):167-171. 被引量:1
  • 9Tian Yu,Ge Weigao. Multiple solutions of impulsive Sturm-Liouville boundary value problem via lower and upper solutions and variational methods[J].{H}Journal of Mathematical Analysis and Applications,2012,(02):475-489.
  • 10Ahmad B,Nieto J J. Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions[J].Nonlinear Anal,2008,(10):3291-3298.doi:10.1016/j.na.2007.09.018.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部