摘要
利用变分方法构造并证明了含变元微分的积分不等式方法,并用该方法推广了Hilbert不等式和Opial不等式,求出了下述不等式的最优常数:∫Ω∫ΩF(x,y)f(x)g(y)dxdy≤C∫Ωp(x)[Dβ1 f(x)]2 dx∫[Ωp(x)[Dβ2 g(x)]2 dx]1/2,C1∫Ωp(x)[Dαf(x)]2 dx≤∫Ω∫ΩF(x,y)f(x)Dαf(y)dxdy≤C2∫Ωp(x)[Dαf(x)]2 dx,其中F,p为正定函数.
Variational method was used to construct the method to demonstrate integral inequality including function derivate and to generalize Hilbert inequality and Opial inequality.We obtained the optimal constant of the following inequalities∫Ω∫ΩF(x,y)f(x)g(y)dxdy≤C1/2, C1∫Ω p(x)[Dαf(x)]2dx≤∫Ω∫ΩF(x,y)f(x)Dαf(y)dxdy≤C2∫Ω p(x)[Dαf(x)]2dx,where F,p are positive definite functions.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2011年第4期652-658,共7页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:10971056)
中央高校基本科研业务费专项基金
关键词
积分不等式
变分法
微分
integral inequality
variational
derivate