期刊文献+

含函数微分的积分不等式

Integral Inequality Including Function Derivate
下载PDF
导出
摘要 利用变分方法构造并证明了含变元微分的积分不等式方法,并用该方法推广了Hilbert不等式和Opial不等式,求出了下述不等式的最优常数:∫Ω∫ΩF(x,y)f(x)g(y)dxdy≤C∫Ωp(x)[Dβ1 f(x)]2 dx∫[Ωp(x)[Dβ2 g(x)]2 dx]1/2,C1∫Ωp(x)[Dαf(x)]2 dx≤∫Ω∫ΩF(x,y)f(x)Dαf(y)dxdy≤C2∫Ωp(x)[Dαf(x)]2 dx,其中F,p为正定函数. Variational method was used to construct the method to demonstrate integral inequality including function derivate and to generalize Hilbert inequality and Opial inequality.We obtained the optimal constant of the following inequalities∫Ω∫ΩF(x,y)f(x)g(y)dxdy≤C1/2, C1∫Ω p(x)[Dαf(x)]2dx≤∫Ω∫ΩF(x,y)f(x)Dαf(y)dxdy≤C2∫Ω p(x)[Dαf(x)]2dx,where F,p are positive definite functions.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2011年第4期652-658,共7页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:10971056) 中央高校基本科研业务费专项基金
关键词 积分不等式 变分法 微分 integral inequality variational derivate
  • 相关文献

参考文献2

二级参考文献10

  • 1杨必成,高明哲.关于Hardy-Hilbert不等式中的一个最佳常数[J].数学进展,1997,26(2):159-164. 被引量:57
  • 2Bi Cheng YANG.On the Norm of a Self-Adjoint Operator and a New Bilinear Integral Inequality[J].Acta Mathematica Sinica,English Series,2007,23(7):1311-1316. 被引量:9
  • 3Kuang Jichang.On new extnsions of Hilbert's integral inequality[J].J.Math.Anal.Appl,1999.235.
  • 4Gao Mingzhe. On Hilbert's inequality and its applications [J]. J. Math. Anal. Appl., 1997, 212: 316-323.
  • 5Yang Bicheng.On generalization of Hardy-Hilbert's integral inequality [J]. Acta Mathematica Sinica (Chinese), 1998, 41(4): 839-844.
  • 6Yang Bicheng. Ageneralized Hilbert's integral inequality with the best constant [J]. Chinese Ann. of Math.,2000, 21A(4): 401-408.
  • 7Kuang Jichang. Applied Inequalities [M]. 2nd ed., Changsha: Hunan Jiaoyu Press, 1993, (Chinese). MR95j: 26001.
  • 8Hardy G H, Littlewood J E and Polya G. Inequalities [M], Cambridge Univ. Press, London, 1952.
  • 9Yang Bicheng. On Hilbert's integral inequality [J]. J. Math. Anal Appl,1998: 220:778-785.
  • 10杨必成.关于Hilbert重级数定理的一个推广[J].南京大学学报(数学半年刊),2001,18(1):145-152. 被引量:11

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部