期刊文献+

李Color三系的幂零理想 被引量:9

Nilpotent Ideals of Lie Color Triple Systems
下载PDF
导出
摘要 将李三系幂零理想的基本性质推广到李color三系上,并给出了李color三系幂零理想和李color代数幂零理想的关系及李color三系幂零性和可解性的关系. The authors extended some conclusions of the Lie color algebras to Lie color triple systems,and discussed the nilpotent ideal of Lie color algebras and Lie color triple systems.Finally the authors presented the relation between nilpotency and solvability in Lie color triple systems.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2011年第4期674-678,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:10871057)
关键词 李color三系 幂零理想 诣零根 标准嵌入 可解性 Lie color triple system nilpotent ideal nil radical standard embedded solvability
  • 相关文献

参考文献8

  • 1Scheunert M. Generalized Lie Algebras [J]. J Math Phvs, 1979, 20: 712-720.
  • 2SU Yu-cai, ZHAO Kai-ming, ZHU Lin-sheng. Simple Lie Color Algebras of Weft Type [ J ~. Israel J Math, 2003, 137(1) : 109-123.
  • 3SU Yu-cai, ZHAO Kai-ming, ZHU Lin-sheng. Classification of Derivation-Simple Color Algebras Related to Locally Finite Derivations [JJ. J Math Phys, 2004, 45(1): 525-536.
  • 4Lister W G. A Structure Theory of Lie Triple Systems [J]. Trans Amer Math Soc, 1952, 72(2) : 217-242,.
  • 5Jacobson N. Lie and Jordan Triple Systems [ J]. Amer J Math, 1949, 71 ( 1 ) : 149-170.
  • 6Yamaguti K. On Algebra of Totally Geodesic Spaces, Lie Triple Systems [J]. J Sci Hiroshima Univ: Scr A, 1967, 21 : 155-159.
  • 7Hopkins N C. Nilpotent Ideals in Lie and Anti-Lie Triple Systems [Jl- J Algebra, 1995, 178(2) : 480-492.
  • 8WU Han, REN Li, ZHANG Yong-zheng. The Killing Model and Ideal of (p,q) Type Lorentz Lie Algebra over Rings [ J ]. Journal of Northeast Normal University : Natural Science Edition, 2010, 42 ( 1 ) : 1-4.

同被引文献41

  • 1SUSUMU OKUBO. Triple products and Yang-Baxter equation and symplectic ternary systems[J]. J Math Phys, 1993,34:3273- 3292.
  • 2SUSUMU OKUBO. Parastatistics as Lie-supertriple systems[J]. J Math Phys, 1994,35 : 2785-2803.
  • 3SUSUMU OKUBO,NORIAKI KAMIYA. Quasi-classical Lie superalgebras and Lie supertriple systems[J]. Communications in Algebra, 2002,30 : 3825-3850.
  • 4史毅茜.李三系的某些结果[D].天津:南开大学数学学院,2003.
  • 5ZHANG ZHIXUE, LI HUAJUN, DONG LEI. Invariant bilinear forms on anti-Lie triple systems[J]. Chinese Annals of Mathematics, 2005,25 A: 429-436.
  • 6Jacobson N. Lie Algebras [M]. New York: Interscience-Wiley, 1962.
  • 7Osborn J. Novikov Algebras [J]. Nova J Algebra Geom, 1992(1) : 1-14.
  • 8BAI Cheng ming, MENG Dao-ji. The Classification of Novikov Algebras in l.ow Dimensions [J]. J Phys A; Math Gen, 2001, 34(8): 1581-1594.
  • 9KANG Yi-fang, CHEN Zhi-qi. Novikov Superalgebras in Low Dimensions [J]. J Nonlinear Math Phys, 2009, 16:251-257.
  • 10ZHUFu-hai, CHEN Zhi-qi. NovikovSuperalgebras withA0=A1A1 [J]. Cze Math J, 2010, 60(4): 903-907.

引证文献9

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部