期刊文献+

轮廓波及曲波和小波变换用于显微图像消噪的比较 被引量:4

Comparison of microscopy image denoising effects based on contourlet,curvelet and wavelet transform
下载PDF
导出
摘要 背景:小波变换只能反映信号的零维奇异性,无法最优表示图像中的线奇异;而且小波变换只存在3个方向,这些都显著影响了它在图像处理领域的应用效果。针对小波变换的缺点,多尺度几何分析理论正在逐步发展,轮廓波变换和曲波变换就是其中的典型代表。目的:定性、定量地比较轮廓波、曲波和小波变换在图像消噪处理中的效果。方法:在简要介绍3种变换基本原理的基础上,比较它们在图像消噪领域的应用,以均方误差和峰值信噪比作为定量指标评价消噪效果,并将其应用于显微镜图像的消噪处理。结果与结论:综合定量评价指标和人眼视觉感受,曲波变换的消噪结果最佳,轮廓波变换效果次之,小波变换效果则不够理想。 BACKGROUND: Wavelets in two-dimension are good at isolating the discontinuities at edge points, but not the smoothness along the contours. In addition, separable wavelets only capture limited directional information, which weaken their application effects on image processing. Image multiscale geometric analysis theory is developed gradually to overcome the shortcomings of wavelets mentioned above. OBJECTIVE: To compare the microscopy image denoising effects qualitatively and quantitatively based on contourlet, curvelet and wavelet transforms. METHODS: Based on the brief descriptions of contoudet, curvelet and wavelet transform, performance analysis and comparison were done depending on image denoising with qualitative and quantitative indices computed, e.g., mean square error and peak signal-to-noise ratio. RESULTS AND CONCLUSION: Experimental results demonstrate that for the test Lena images and microscopy images, curvelet transform achieves the best result, while wavelet transform result is poor.
作者 汤敏 陈峰
出处 《中国组织工程研究与临床康复》 CAS CSCD 北大核心 2011年第22期4094-4097,共4页 Journal of Clinical Rehabilitative Tissue Engineering Research
基金 国家自然科学基金项目(61005054) 江苏省高校自然科学基础研究面上项目(09KJD510004和10KJB510020) 南通市科技项目(K2009032) 南通大学2008年度博士科研启动基金(08B15)~~
  • 相关文献

参考文献7

  • 1Donoho DL, Duncan MR. Digital Curvelet Transform: Strategy, Implementation and Experiments. Proceedings of SPIE. 2000; 4056:12-30.
  • 2Candes E, Demanet L, Donoho D, et al. Fast Discrete Curvelet Transforms, Technical Report of Applied and Computational Mathematics.California Institute of Technology. 2005:1-43.
  • 3Do MN, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process. 2005;14(12):2091-2106.
  • 4才溪,赵巍.Contourlet变换低通滤波器对图像融合算法影响的讨论[J].自动化学报,2009,35(3):258-266. 被引量:10
  • 5Katkovnik V. A multiresolution nonparametric regression for spatially adaptive image de-noising. IEEE Signal Processing Letters. 2004;11(10): 798-801.
  • 6Yan YJ, Osadciw L.. Contourlet Based Image Recovery and De-noising Through Wireless Fading Channels. 2005 Conference on Information Science and Systems, The Johns Hopkins University, USA, 2005.
  • 7汤敏,王惠南.免疫荧光图像中神经突起的分维研究[J].生物医学工程学杂志,2008,25(6):1438-1441. 被引量:2

二级参考文献24

  • 1陈真诚,周兆英,赵于前,蒋大宗.人体肝脏组织CT图像的分维特征研究[J].航天医学与医学工程,2005,18(3):206-210. 被引量:5
  • 2沈强,蒋大宗.非线性动力学现代理论在生物医学工程中的应用[J].国外医学(生物医学工程分册),1996,19(2):68-75. 被引量:4
  • 3杨镠,郭宝龙,倪伟.基于区域特性的Contourlet域多聚焦图像融合算法[J].西安交通大学学报,2007,41(4):448-452. 被引量:25
  • 4Herbert FJ, Eduardo F. Neurons and fractals: how reliable and useful are calculations of fractal dimensions? Journal of Neuroscience Methods, 1998; 81(1):9
  • 5Iftekharuddin KM, Wei J, Marsh R. Fractal analysis of tumor in brain MR images. Machine Vision and Application, 2003 ; 13(5) : 352
  • 6Nguyen TM, Rangayyan RM. Shape analysis of breast masses in marnrnograms via the fractal dimension. Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. Shanghai, 2005; 3210
  • 7Sun WR, Yu BZ, Zhang XJ, et al. Fractal feature extraction of marrow cell images. Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. Shanghai, 2005; 6375
  • 8Clarke KC. Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method. Computers & Geosciences, 1986;12(5):713
  • 9Zhou HW, Xie H. Direct estimation of the fractal dimensions of a fracture surface of rock. Surface Review and Letters, 2003; 10 (5) :751
  • 10Hassainia F, Magafia I, Langevin F, Kernevez J P. Image fusion by an orthogonal wavelet transform and comparison with other methods. In: Proceedings of the Annual Interna- tional Conference on Engineering in Medicine and Biology Society. New Jersey, USA: IEEE, 1992. 1246-1247.

共引文献10

同被引文献37

  • 1David LD, Duncan MR. Digital Curvelet transform: strategy, implementation and experiments//Intemational society for optics and photonics. Melbourne: Geoffrey I. Opat University, 2000: 12-30.
  • 2Candes EJ, Demanet L, Donoho DL, et aL Fast discrete Curvelet Iransforms: technical report of applied and computational malhematics. California Institute of Technology, 2006, 5(3): 861-899.
  • 3Do MN, Vetterli M. Orthonormal finite ridgelet transform for image compression. IEEE international conference on image processing, 2000, 2(27): 367-370.
  • 4Maske N-D, Patti W. Comparison of image compression using wavelet for curvelet transform & transmission over wireless channel. International Journal of Seienlific and Research Publications, 2012, 2(5): 1-5.
  • 5袁芳.Ctavelet变换在数字图像去噪和压缩中的研究.西安:西安电子科技大学硕士学位论文,2012.
  • 6Lang CS, Hong L, Li GZ, et al. Combined sparse representation based on curvelet transform and local DCT for multi-layxxi image compression// Communication Software and Networks (ICCSN), 2011 IEEE 3rd International Conference on Communication Software and Networks. Xi'an: Xi'an Electronic and Engineering University, 2011: 316-320.
  • 7Abd-Elhafiez WM. Image compression algorithm using a fast curvelet transform. International Journal of Computer Science and Telecommtmications, 2012, 3(4): 43-46.
  • 8Mansoor A, Mansoor A. On image compression using digital Curvelet tiansform//9th International Multitopic Conference. Pakistan: National University of Computer and Emerging Sciences, 2005:1-4.
  • 9Li YC, Qiu Y, Jiao RH. Image compression scheme based on curvelet a'ansform and support vector machine. Expert Syst Appl, 2010, 37(4):3063-3069.
  • 10Reddy K.N, Reddy BS, Rajasekhar G, et al. A fast curvelet transform image compression algorithm using with modified SPIHT. International Journal of Computer Science and Telecommunications, 2012, 3(2): 1-8.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部