期刊文献+

Na/Se掺杂p-型AgSbTe_2化合物热电性能研究 被引量:1

Enhanced Thermoelectric Performance in Na/Se Doped p-type AgSbTe_2 Compound
下载PDF
导出
摘要 采用熔融-淬火-放电等离子烧结方法制备了两种不同掺杂方式的Na单掺和Na/Se共掺p型AgSbTe2多晶块体材料(Ⅰ:掺杂元素以过量形式添加AgNa0.01SbTe2,AgNa0.01SbTe2Se0.04;Ⅱ:掺杂元素以置换对应元素形式添加Ag0.99Na0.01SbTe2,Ag0.99Na0.01SbTe1.96Se0.04).研究了Na单掺、Na/Se共掺及不同掺杂方式对材料电、热输运性能的影响规律.通过比较不同掺杂方式样品的电、热传输性能确定了最佳的Na/Se掺杂方式:Na置换Ag,Se置换Te并结合适当的Se过量加入.由于Na掺杂对Seebeck系数的提高及Se掺杂对电导率和热导率的优化,Ag0.99Na0.01SbTe1.96Se0.04化合物ZT最大值在620 K达到1.4,较未掺杂AgSbTe2化合物提高约17%. Two types of Na-doped and Na/Se co-doped polycrystalline,sintered samples of p-type AgSbTe2 thermo-electric compounds were prepared from high purity elements by a melt-quench technique followed by spark plasma sintering(Ⅰ: with excess Na or Na/Se,AgNa0.01SbTe2,AgNa0.01SbTe2Se0.04;Ⅱ : replacing corresponding elements by Na or Na/Se,Ag0.99Na0.01SbTe2,Ag0.99Na0.01SbTe1.96Se0.04).The impacts of Na-doping,Na/Se co-doping and doping form on electrical and thermal transport properties were investigated.Meanwhile,by comparing the thermoelectric performance of samples with different kinds of doping form,the optimal doping method is obtained.That is Na re-placing Ag,Se replacing Te with appropriate amount of excess Se.Due to the elevation of Seebeck coefficient by Na-doping and optimization of electrical and thermal conductivities by Se-doping,a maximum of ZT merit of 1.4 is achieved at 620 K for sample Ag0.99Na0.01SbTe1.96Se0.04,representing a 17% enhancement with respect to the undoped sample at the same temperature.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2011年第7期680-684,共5页 Journal of Inorganic Materials
基金 国家973计划项目(2007CB607501) 中央高校基本科研业务费专项基金(2010-IV-046)~~
关键词 AgSbTe2 热电性能 SE NA 掺杂 AgSbTe2 thermoelectric property Se Na doping
  • 相关文献

参考文献20

  • 1陈立东,熊震,柏胜强.纳米复合热电材料研究进展[J].无机材料学报,2010,25(6):561-568. 被引量:43
  • 2Yang S H, Zhu T J, Sun T, et al. Nanostructures in high-performance (GeTe)x(AgSbTe2)100-x thermoelectric materials. Nanotechnology, 2008, 19(24): 245707-1-5.
  • 3Hsu K F, Loo S, Guo F, et al. Cubic AgPb,.SbTe2+,~: bulk thermoe- lectric materials with high figure of merit. Science, 2004, 303(5659): 818-821.
  • 4Morelli D T, Jovovic V, Heremans J E Intrinsically minimal ther- mal conductivity in cubic I-V-VI2 semiconductors. Phys. Rev. Lett., 2008, 101(3): 035901-1-4.
  • 5Ye L H, Hoang K, Freeman A J, et al. First-principles study of the electronic, optical, and lattice vibrational properties of AgSbTe2. Phys. Rev. B, 2008, 77(24): 245203-1-6.
  • 6Barabash S V, Ozolins V, Wolverton C. First-principles theory of competing order types, phase separation, and phonon spectra in thermoelectric AgPbmSbTem~2 alloys. Phys. Rev. Lett., 2008, 101(15): 155704-1-4.
  • 7Wolfe R, Wemick J, Haszko S. Anomalous hall effect in AgSbTe> J. Appl. Phys., 1960, 31(11): 1959-1964.
  • 8Wojciechowski K T, Schmidt M. Structural and thermoelectric properties of AgSbTe2-AgSbSe2 pseudobinary system. Phys. Rev. B, 2009, 79(18): 184202-1-7.
  • 9Wang H, Li J F, Zou M M, et al. Synthesis and transport property of AgSbTe2 as a promising thermoelectric compound. Appl. Phys. Lett., 2008, 93(20): 202106-1-3.
  • 10Su T C, Jia X P, Ma H A, et al. Enhanced thermoelectric perform- ance of AgSbTe2 synthesized by high pressure and high tempera- ture. J. Appl. Phys., 2009, 105(7): 073713-1-4.

二级参考文献4

共引文献43

同被引文献29

  • 1T. M. Tritt Holey and Unholey Semiconductors [J] Science,1999, 283: 804-805.
  • 2D. Arivuoli, F. D. Gnanam, P. Ramasamy. Growth andmicrohardness studies of chalcogenides of arsenic,antimony, and bismuth [J]. J. Mater. Sci. Lett., 1988, 7:711-713.
  • 3B. Zhang, J. Sun, H. E. Katz, et aL Promising ThermoelectricProperties of Commercial PEDOT: PSS Materials andTheir Bi2Te3 Powder Composite[J]. ACS. Applied. Materials& Interfaces., 2010, 2: 3170 - 3178.
  • 4M. S. Dresselhaus, G. Chen, M. Y. Tang, et al. NewDirections for Low-Dimensional Thermoelectric Materials[J]. Adv. Mater., 2007, 19: 1043-1053.
  • 5S.Y. Wang, X. Y. She, X. F. Tang, et al. EnhancedThermoelectric Performance and Thermal Stability in b—Zn4Sb3 by Slight Pb-Doping[J]. Journal of ElectronicMaterials, 2012, 41: 1091-1099.
  • 6S.Y. Wang, W. J. Xie, X. F. Tang, et al. Effects ofCooling Rate on Thermoelectric Properties of n -TypeBi2 (Se0.4Te0.6)3 Compounds [J]. Journal of ElectronicMaterials, 2011, 40: 1150-1157.
  • 7J. J. Shen, Z. Z Yin, X. B. Zhao, et aL Improved ThermoelectricPerformance of p-Type Bismuth Antimony Telluride BulkAlloys Prepared by Hot Forging [J]. Journal of ElectronicMaterials, 2011,40: 1095-1099.
  • 8H. L. Gao, T. J. Zhu, X. X. Liu, et al. Flux synthesisand thermoelectric properties of eco-friendly Sb dopedMg2Si0.5Sn0.5 solid solutions for energy harvesting[J]. J.Mater. Chem., 2011, 21: 5933-5937.
  • 9L. S. Li, R. G. Cao, L. M. Qi, et al. Template Synthesisof Hierarchical Bi2E3 (E=5, Se, Te) Core-Shell Microspheresand Their Electrochemical and Photoresponsive Properties[J]. J. Phys. Chem. C.,2009, 113: 18075-18081.
  • 10P. F. Hu, Y. L. Cao, D. Z. Jia, et al. Selective synthesisof Bi2Se3 nanostructures by solvothermal reaction [J].Materials Letters, 2010, 64: 493-496.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部