期刊文献+

Circulant矩阵构造准循环LDPC码的旋转环长分析法(英文)

Rotation-Distance Analysis of QC-LDPC Code Based on Circulant Permutation Matrices
下载PDF
导出
摘要 低密度奇偶检验(QC-LDPC:Quasi-Cyclic Low-Density Parity-Check)码的环长分布影响决定着LDPC码的解码效果和编码复杂度,但其分析较困难。为此,首次提出旋转距离分析法,用于分析基于Circulant矩阵构造的准循环低密度奇偶校验码(QC-LDPC码)的环分布,并给出了任何一个基于Circulant矩阵构造出的QC-LDPC码中的最小环长(girth)的上限(12)。同时,运用该方法,分析出一种权重为(3,5)的QC-LD-PC码的译码效果与该码环分布的关系。由于LDPC码奇偶校验矩阵中的Circulant子矩阵,可以被当成1个矩阵节点的单一节点看待,从而简化了整个码的特纳图,使寻找QC-LDPC码中闭环的方法变得简单。 Cycle distribution of LDPC (Low-Density Parity-Check) codes affects the codes 'decoding performance and encoding complexity, however it is commonly NP hard to analyse. We propose the rotation-distance for analysis of QC-LDPC ( Quasi-Cyclic Low-Density Parity-Check) code based on circulant matrices. The circulant sub-matrices within the parity-check matrix are treated as a "matrix node" to simplify theTanner graphs of the codes. Thus cycles of QC-LDPC codes can be found efficiently, and we demonstrate the usefulness of the new method by a simple proof of the known result that 12 is an upper limit of the girth of the QC-LDPC codes we considered. Moreover, the cycle analysis based on the new method also reveals relations between decoding performance and the cycle distribution of the code.
出处 《吉林大学学报(信息科学版)》 2011年第3期213-220,共8页 Journal of Jilin University(Information Science Edition)
关键词 准循环低密度奇偶校验码(QC-LDPC) Circulant矩阵 旋转距离分析 最小环长 环分布 矩阵Tanner图 index terms-QC-LDPC codes circulant matrices rotation distance amalysis girth cycle distribution matrix tanner graph.
  • 相关文献

参考文献10

  • 1GALLAGER R G. Low-Density Parity-Check Codes [J]. IRE Transactions on Information Theory, 1962 (1) : 21-28.
  • 2LIN S, COSTELLO D J. Error Control Coding [ M ]. [ S. 1. ] : Pearson Prentice Hall, 2004.
  • 3TANNER R M. A Recursive Approach to Low Complexity Codes [J]. IEEE Transactions on Information Theory, 1981, 27 (5) : 533-547.
  • 4TANNER R M, SRIDHARA D, SRIDHARAN A, et al. LDPC Block and Convolutional Codes Based on Circulant Matrices [ J]. IEEE Transactions on Information Theory, 2004, 50 (12) : 2966-2984.
  • 5YOSHIDA K, BROCKMAN J, COSTELLO D, et al. VLSI Implementation of Quasi-Cyclic LDPC Codes [ C] //Proc 2004 Int Symp Information Theory and Its Applications. Parma, Italy: E s. n. ] , 2004: 551-556.
  • 6SRIDHARAN A, LENTMAIER M, COSTELLO D, et al. Convergence Analysis of a Class of LDPC Convolutional Codes for the Erasure Channel [C] JJProc 42ih Allerton Conf Communication, Control and Computing. Monticello, USA: [ s. n. J, 2004 : 953-962.
  • 7SRIDHARAN A, COSTELLO D J, SRIDHARA JR D, et al. A Construction for Low Density Parity Check Convolutional Codes Based on Quasi-Cyclic Block Codes [ C ] // Proc 2002 IEEE Int Symp Information Theory. Lausanne, Switzerland : [ s. n. ], 2002 : 481.
  • 8SRIDNARA D, FUJA T E, TANNER R M. Low Density Parity Check Codes From Permutation Matrices [ C] /// Proc Conf Information Sciences and Systems. Baltimore, USA : [ s. n. ], 2001 : 142.
  • 9LI Z, CHEN L, ZENG L, et al. Efficient Encoding of Quasi-Cyclic Low-Density Parity-Check Codes [J]. IEEE Transac- tions on Communications, 2006, 54 (1) : 71-81.
  • 10FOSSORIER M P C. Quasicyclic Low-Density Parity-Check Codes From Circulant Permutation Matrices I J]. IEEE Transac- tions on Information Theory, 2004, 50 (8) : 1788-1793.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部