期刊文献+

一种基于手绘地图的动态环境视觉导航方法 被引量:7

A Visual Navigation Method Using a Hand-Drawn-Route-Map in Dynamic Environments
下载PDF
导出
摘要 提出了一种基于手绘地图和路径的移动机器人视觉导航方法.首先,根据较小偏差的原则提取运行路径中的关键引导点,以便将原始路径分成多段.然后,移动机器人在各段运行过程中,对预先绘制的手绘地图中对应的参考图像以及机器人摄像头实时采集到的图像信息进行匹配.这里提出预测估计的方法估计当前视野中最可能存在的图像,以加速图像的匹配过程,并利用SURF(speeded up robust feature)算法检测图像的特征,依靠KD-Tree方法快速求得匹配点,采用RANSAC(RANdom SAmple Consensus)算法求解参考图像与实时图像的投影变换矩阵H,进而得到参考图像在实时图像中的位置,并融合里程计数据,得到机器人的大致位置.再后,根据获得的机器人大致位置,计算下一段的运行方向,继续下一段运行.依此类推,直至运动到最后一段.最后,通过一系列的实验,验证了机器人在本文方法下不需要精确环境地图及精确运行路径就能顺利导航,并能实时有效地避开动态障碍物. A visual navigation method of mobile robot based on hand-drawn route map and route is proposed.At first,some key boot points are picked up from the running path according to the principle of small deviation,so that the original path is divided into several segments.Then,during the mobile robot running along every segment,real-time image information from robot camera is matched with the corresponding one in the prior hand-drawn-route-map.In order to speeded up image processing,a kind of prediction estimation method is proposed to find the most potential image in the current field of vision. SURF(speed up robust feature) algorithm is used to detect image features.Matching points can be found rapidly in terms of KD-Tree.The projection transform matrix H between the referenced image and the real-time one is solved by RANSAC (RANdom SAmple Consensus) algorithm,in order to know the location of the referenced image in real-time one.With reference to odometer and real-time image information,the robot can be roughly localized.And then,for the next segment, the robot's running direction is computed according to its current rough localization until the last segment.At last,through a series of experiments,the advantage and efficiency of the new method in navigation and real-time dynamic obstacle avoidance are testified with the imprecise real map and route.
出处 《机器人》 EI CSCD 北大核心 2011年第4期490-501,共12页 Robot
基金 国家自然科学基金(青年基金)资助项目(60804063) 江苏省自然科学基金资助项目(BK2010403) 图像信息处理与智能控制教育部重点实验室开放基金资助项目(200902) 东南大学优秀青年教师教学 科研资助计划资助项目(3208001203) 东南大学创新基金资助项目(3208000501)
关键词 移动机器人 视觉 不精确导航 手绘地图 动态环境 SURF mobile robot vision imprecise navigation hand-drawn-route-map dynamic environment SURF(speed up robust feature)
  • 相关文献

参考文献22

  • 1Sasaki T, Brscic D, Hashimoto H. Human-observation-based extraction of path patterns for mobile robot navigation[J]. IEEE Transactions on Industrial Electronics, 2010, 57(4): 1401-1410.
  • 2Gueaieb W, Miah S. An intelligent mobile robot navigation technique using RFID technology[J]. IEEE Transactions on In- strumentation and Measurement, 2008, 57(9): 1908-1917.
  • 3Kim G, Chung W. Navigation behavior selection using general- ized stochastic Petri nets for a service robot[J]. 1EEE Transac- tions on Systems, Man, and Cybernetics, Part C, 2007, 37(4): 494-503.
  • 4DeSouza G N, Kak A C. Vision for mobile robot navigation: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(2): 237-267.
  • 5Bonin-Font E Ortiz A, Oliver G. Visual navigation for mobile robots: A survey[J]. Journal of Intelligent and Robotic Systems, 2008, 53(3): 263-296.
  • 6Li X D, Huang X H, Dezert J, et al. A successful application of DSmT in sonar grid map building and comparison with DSTo based approach[J]. International Journal of Innovative Comput- ing, Information and Control, 2007, 3(3): 539-549.
  • 7Li X D, Dezert J, Smarandache F, et al. Evidence support- ing measure of similarity for reducing the complexity in infor- mation fusion[J]. Information Sciences, 2011, 181(10): 1818- 1835.
  • 8石朝侠,洪炳镕,周彤,王燕清.大规模环境下的拓扑地图创建与导航[J].机器人,2007,29(5):433-438. 被引量:18
  • 9庄严,徐晓东,王伟.移动机器人几何-拓扑混合地图的构建及自定位研究[J].控制与决策,2005,20(7):815-818. 被引量:25
  • 10Tversky B, Lee P U. How space structures language[M]//Spatial cognition: An Interdisciplinary Approach to Representing and Processing Spatial Knowledge. Berlin, Germany: Springer- Verlag, 1998: 157-176.

二级参考文献17

  • 1庄严,徐晓东,王伟.移动机器人几何-拓扑混合地图的构建及自定位研究[J].控制与决策,2005,20(7):815-818. 被引量:25
  • 2Jensfelt P, Christensen H I. Pose Tracking Using Laser Scanning and Minimalistic Environmental Models[J]. IEEE Trans on Robotics and Automation, 2001, 17(2): 138-147.
  • 3Tomatis N, Nourbakhsh I, Siegwart R. Hybrid Simultaneous Localization and Map Building: A Natural Integration of Topological and Metric[J]. Robotics and Autonomous Systems, 2003, 44(1): 3-14.
  • 4Zhuang Y, Wang W, Liu L, et al. Mobile Robot Indoor Map Building and Pose Tracking Using Laser Scanning[A]. Proc of Int Conf on Intelligent Mechatronics and Automation[C]. Chengdu, 2004: 656-661.
  • 5Tomatis N, Nourbakhsh I, Siegwart R. A Hybrid Approach for Robust and Precise Mobile Robot Navigation with Compact Environment Modeling[A]. Proc of the 2001 IEEE Int Conf on Robotics and Automation[C]. Seoul, 2001: 1111-1116.
  • 6Arras K O, Tomatis N, Jensen B, et al. Multisensor on-the-fly Localization: Precision and Reliability for Applications[J]. Robotics and Autonomous System, 2001, 34(2-3): 131-143.
  • 7Makarenko A A,Williams S B,Durrant-Whyte H F.Decentralized certainty grid maps[A].Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems[C].Piscataway,NJ,USA:IEEE,2003.3258-3263.
  • 8Austin D J,McCarragher B J.Geometric constraint identification and mapping for mobile robots[J].Robotics and Autonomous Systems,2001,35(2):59-76.
  • 9Fabrizi E,Saffiotti A.Augmenting topology-based maps with geometric information[J].Robotics and Autonomous Systems,2002,40(2-3):91-97.
  • 10Kuipers B,Byun Y T.A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations[J].Robotics and Autonomous Systems,1991,8(1-2):47-63.

共引文献38

同被引文献43

  • 1蔡自兴,王勇,王璐.基于角点聚类的移动机器人自然路标检测与识别[J].智能系统学报,2006,1(1):52-56. 被引量:7
  • 2Yuan W, Brunskill E, Kollar T, et al. Where to go: Interpreting natural directions using global inference[C]//IEEE International Conference on Robotics and Automation. Piscataway, N J, USA: IEEE, 2009: 3761-3767.
  • 3Kollar T, Tellex S, Ray D, et al. Toward understanding natural language directions[C]//5th ACM/IEEE International Conference on Human-Robot Interaction. Piscataway, NJ, USA: IEEE, 2010: 259-266.
  • 4吴雪建.基于手绘地图的移动机器人视觉导航方法研究[D].南京:东南大学,2010.
  • 5Tversky B, Lee P U. How space structures language[C]//Proceedings of Spatial Cognition, An Interdisciplinary Approach to Representing and Processing Spatial Knowledge. London, UK: Springer-Verlag, 1998: 157-176.
  • 6Bonin-Font B, Ortiz A, Oliver G. Visual navigation for mobile robots : a survey [ J ]. Journal of Intelligent and Robotic Systems, 2008, 53 ( 3 ) : 263 - 296.
  • 7Guo Yang, Xu Xinhe. Color landmark design for mo- bile robot localization[ C ]//IMACS Multi Conference on Computational Engineering in Systems Applications. Beijing, China, 2006 : 1868 - 1874.
  • 8Hu Huosheng, Gu Dongbing. Landmark-based naviga- tion of industrial mobile robots [ J ]. International Jour- nal of Industry Robot, 2000, 27 ( 6 ) : 458 - 467.
  • 9Hayet J B, Lerasle F, Devy M. A visual landmark framework for indoor mobile robot navigation E C ]// Proceedings of ICRA'02 Robotics and Automation. Washington DC, USA, 2002,4:3942 - 3947.
  • 10Blanc G, Mezouar Y, Martinet P. Indoor navigation of a wheeled mobile robot along visual routes I C ]//IEEE International Conference on Robotics and Automation. Barcelona, Spanish,2005:3354 - 3359.

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部