期刊文献+

基于特征索引的图相似查询过滤算法

Graph Similarity Query Filtering Algorithm Based on Feature Index
下载PDF
导出
摘要 分析图相似查询候选集的产生过程以及特征图之间的关系对候选图集的影响,提出一种基于特征索引的图相似查询过滤算法,使用GIndex算法建立特征图索引结构,通过特征图之间的选择性关系给出一个有序的特征集,并借助特征-图矩阵对数据库进行筛选得到候选图集。实验结果证明,该方法能准确地产生候选图集,从而提高图查询的效率。 This paper analyzes the generation process of the graph similarity search candidates, and the relationship between feature-graph that not be token into account in current filtering algorithm, and presents graph similarity query filtering algorithm based on feature index. It builds a feature-graph index structure, analyzes the selectivity of each feature and builds a sorted feature, and generates the candidate graphs by using the feature-graph matrix to efficiently filter the graph database. Experimental results show that this algorithm Can accurately generate candidate and improve the efficiency of the graph query.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第14期50-52,55,共4页 Computer Engineering
基金 国家自然科学基金资助项目(60673136) 河北省教育厅自然科学研究计划基金资助项目(2009101)
关键词 相似查询 图数据库 特征索引 特征图 过滤算法 similarity query graph database feature index feature graph filtering algorithm
  • 相关文献

参考文献6

  • 1Daylight Chemical Information Systems, Inc.. Daylight Theory Manual-daylight Version 4.9[EB/OL]. (2008-02-01). http://www. daylight.corn/dayhtml/doc/theory/index.html.
  • 2Milo T, Suciu D. Index Structures for Path Expressions[C]// Proceedings of the 7th International Conference on Database Theory. Jerusalem, Palestine: [s. n.], 1999: 277-295.
  • 3Goldman R, Widom J. DataGuides: Enabling Query Formulation and Optimization in Semistructured Database[C]//Proceedings ofthe 23rd International Conference on Very Large Data Bases. Athens, Greece: [s. n.], 1997: 436-445.
  • 4Shasha D, Wang J T L, Giugno R. Algorithmics and Applications of Tree and Graph Searching[C]//Proceedings of the 21stSymposium on Principles of Database Systems. Los Angeles, California, USA: ACM Press, 2002: 39-52.
  • 5Yan Xifeng, Yu P S, Han Jiawei. Graph Indexing: A Frequent Structure-based Approach[C]//Proceedings of InternationalConference on Management of Data. Paris, France: [s. n.], 2004: 335-346.
  • 6黄崇本,陶剑文.一种新颖的对比子图索引算法[J].计算机工程,2009,35(5):64-67. 被引量:2

二级参考文献7

  • 1Yan Xifeng, Yu P S, Han Jiawei. Graph Indexing: A Frequent Structure-based Approach[C]//Proc. of the ACM SIGMOD'04. Maison de la Chimie, Pads, France: ACM Press, 2004: 335-346.
  • 2Dong Guozhu, Li Jiny'an. Efficient Mining of Emerging Patterns: Discovering Trends and Differences[C]//Proc. of the 5th ACM SIGKDD. New York, USA: ACM Press, 1999: 43-52.
  • 3Ting R M H, Bailey J. Mining Minimal Contrast Subgraph Patterns[C]//Proc. of the 6th SIAM. Atlanta, Georgia, USA: ACM Press, 1999.
  • 4Shasha D, Wang J T L, Giugno R. Algorithmics and Applications of Tree and Graph Searching[C]//Proc. of the 21st ACM SIGMOD-SIGACT-SIGART. Santa Barbara, California, USA: ACM Press. 2002: 39-52.
  • 5Kuramochi M, Karypis G. Frequent Subgraph Discovery[C]//Proc. of the IEEE ICDM'01. San Jose, California, USA: IEEE Press,2001: 313-320.
  • 6Nijssen S, Kok J N. A Quickstart in Frequent Structure Mining Can Make a Difference[C]//Proc. of KDD'04. Seattle, WA, USA: ACM Press, 2004: 647-652.
  • 7Yan Xifeng, Han Jiawei. Closegraph: Mining Closed Frequent Graph Pattems[C]//Proc. of ACM SIGKDD'03. Washington D. C., USA: ACM Press, 2003: 286-295.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部