期刊文献+

基于GPU的闭合频繁项集挖掘方法 被引量:1

Closed Frequent Itemset Mining Method Based on Graphic Processing Unit
下载PDF
导出
摘要 提出一种采用图形处理器挖掘闭合频繁项集的方法,用二进制数据表示项集,利用单指令多数据的体系结构实现并行计算,结合项集索引树,可以提高项集支持度计算和项集查找的速度。在2种数据集上的实验结果表明,该方法能够用更少的空间保存频繁项集的全部信息,并减少挖掘时间。 This paper considers a problem that to the best of the knowledge has not been addressed, namely, how to use Graphic Processing Unit(GPU) for mining closed frequent itemsets. The method employs a single-instruction-multiple-data architecture to accelerate the mining speed using a bitmap data representation of frequent itemsets, a further memory-based index tree is used to make search faster. Experimental results show that the algorithm can store all the information of frequent itemsets using less space, and achieve better performance in running time.
作者 李海峰
出处 《计算机工程》 CAS CSCD 北大核心 2011年第14期59-61,共3页 Computer Engineering
基金 中央财经大学"211工程"三期基金资助项目
关键词 图形处理器 频繁项集 闭合频繁项集 索引树 数据挖掘 Graphic Processing Unit(GPU) frequent itemset closed frequent itemset index tree data mining
  • 相关文献

参考文献5

  • 1Han Jiawei, Cheng Hong, Xin Dong, et al. Frequent Pattern Mining: Current Status and Future Directions[J]. Data Mining andKnowledge Discovery, 2007, 14(1): 55-86.
  • 2Pasquier N, Bastide Y, Taouil R, et al. Efficient Mining of Association Rules Using Closed Itemset Lattices[J]. Journal ofInformation Systems, 1999, 24(1): 1-12.
  • 3程转流,胡学钢.数据流中频繁闭合模式的挖掘[J].计算机工程,2008,34(16):50-52. 被引量:4
  • 4Uno T, Kiyomi M, Arimura H. LCM Ver. 3: Collaboration of Array, Bitmap and Prefix Tree for Frequent Itemset Mining[C]//Proc. of Workshop on Knowledge Discovery and Data Mining. Helsinki,Finland: [s. n.], 2005.
  • 5Fang Wenbin, Lu Mian, Xiao Xiangye, et al. Frequent Itemset Mining on Graphics Processors[C]//Proc. of Workshop on DataManagement on New Hardware. Rhode Island, USA: [s. n.], 2009.

二级参考文献5

  • 1Giannella C, Han Jiawei, Pei Jian, et al. Mining Frequent Patterns in Data Streams at Multiple Time Granularities[C]//Proc. of the NSF Workshop on Next Generation Data Mining. Cambridge, Mass, USA: MIT Press. 2003.
  • 2Manku G S, Motwani R. Approximate Frequency Counts over Streaming Data[C]//Proc. of the 28th lnt'l Conference on Very Large Data Bases. Hong Kong, China: [s. n.], 2002.
  • 3Arasu A, Manku G S. Approximate Counts and Quantiles over Sliding Windows[C]//Proc. of the 23rd ACM Symposium on Principles of Database Systems. Paris, France: ACM Press, 2004.
  • 4Pasquier N, Bastide Y, Taouil R, et al. Discovering Frequent Closed Itemsets for Association Rules[C]//Proc. of the 17th Int'l Conf. on Database Theory. Berlin, German: Springer-Verlag, 1999.
  • 5刘君强,孙晓莹,庄越挺,潘云鹤.挖掘闭合模式的高性能算法[J].软件学报,2004,15(1):94-102. 被引量:19

共引文献3

同被引文献5

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部