期刊文献+

动态邻域混合粒子群优化算法 被引量:5

Dynamic Neighborhood Hybrid Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 粒子群优化(PSO)算法对于多峰搜索问题一直存在早熟收敛问题。为在增强PSO算法全局搜索能力的同时提高收敛速度,提出一种动态邻域混合粒子群优化算法DNH_PSO,采用PSO局部模型,将随机拓扑和冯诺依曼拓扑相结合形成动态邻域,提高算法的全局搜索能力,为增强算法的局部搜索能力并加快收敛速度,使用粒子邻域全面学习策略,将拟牛顿法引入算法中。与其他PSO实验对比分析表明,该算法对于多峰搜索问题具有较好的全局收敛性。 Particle Swarm Optimization(PSO) algorithm has existed premature convergence for multimodal search problems. In order to enhance the global search ability and increase the speed of convergence, this paper proposes a Dynamic Neighborhood Hybrid Particle Swarm Optimization(DNH PSO) algorithm using local particle swarm model, the random topology and the von Neumann topology are combined to form dynamic neighborhood topology, improving the algorithm's global search ability, meanwhile in order to enhance the local search ability and convergence speed, the use of particles neighborhood comprehensive learning strategy, and introduction of quasi-Newton method. Experimental comparative analysis with other variant PSO shows that the algorithm for the multimodal search problems has better global convergence.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第14期211-213,共3页 Computer Engineering
基金 江西省教育厅科技基金资助项目(GJJ10616)
关键词 粒子群优化 动态邻域 早熟收敛 全局搜索 拟牛顿法 Particle Swarm Optimization(PSO) dynamic neighborhood premature convergence global search quasi-Newton method
  • 相关文献

参考文献6

  • 1Eberhart R, Kennedy J. A New Optimizer Using Particle Swarm Theory[C]//Proc. of the 6th Symposium on Micromachine and Human Science. Piscataway, New Jersey, USA: [s. n.], 1995: 39-43.
  • 2Peram T, Veeramachaneni K. Fitness-distance-ratio Based Particle Swarm Optimization[C]//Proc. of IEEE Swarm Intelligence Symposium. Indianapolis, USA:[s. n.], 2003: 174- 181.
  • 3Kennedy J, Mendes R. Population Structure and Particle Swarm Performance[C]//Proc. of CEC'02. Honolulu, USA: [s. n.], 2002:1671-1676.
  • 4于雪晶,麻肖妃,夏斌.动态粒子群优化算法[J].计算机工程,2010,36(4):193-194. 被引量:20
  • 5Kennedy J. Small Worlds and Mega-minds: Effects of Neighbor- hood Topology on Particle Swarm Performance[C]//Proc. ofCEC'99. Piscataway, New Jersey, USA: [s. n.], 1999: 1931- 1938.
  • 6Mendes R, Kennedy J, Neves J. The Fully Informed Particle Swarm: Simpler, Maybe Better[J]. IEEE Transactions on Evolutio-nary Computation, 2004, 8(3): 204-210.

二级参考文献4

  • 1Kennedy J, Eberhart R C. Particle Swarm Optimization[C]// Proceedings of IEEE International Conference on Neural Networks. [S. l.]: IEEE Press, 1995: 1942-1948.
  • 2Eberhart R C, Kennedy J. A New Optimizer Using Particle Swarm[C]//Proceedings of the 6th International Symposium on Micro Machine and Human Science. Nagoya, Japan: IEEE Press, 1995: 39-43.
  • 3Eberhan R C, Shi Yuhui. Tracking and Optimizing Dynamic Systems with Particle Swarms[C]//Proceedings of the IEEE Congress on Evolutionary Computation. Seoul, Korea: [s. n.], 2001:94-100.
  • 4阳春华,谷丽姗,桂卫华.自适应变异的粒子群优化算法[J].计算机工程,2008,34(16):188-190. 被引量:51

共引文献19

同被引文献53

  • 1张建忠,沈昱,周光涛,于丽,张晓光,杨伯君.粒子群优化算法在自适应偏振模色散补偿中的性能研究[J].光学学报,2006,26(1):1-6. 被引量:3
  • 2王雪飞,王芳,邱玉辉.一种具有动态拓扑结构的粒子群算法研究[J].计算机科学,2007,34(3):205-207. 被引量:16
  • 3郭文忠,陈国龙,洪玉玲.求解TSP问题的动态邻域粒子群优化算法[J].漳州师范学院学报(自然科学版),2007,20(2):37-41. 被引量:3
  • 4KENNEDY J, EBERHART R. Particle swarm optimization [ C]//Proc IEEE International Conference on Neural Net- works. Perth, Australia, 1995: 1942-1948.
  • 5POLI R. An analysis of publications on particle swarm opti- mization applications [ R ]. London : Department of Computer Science, University of Essex, 2007.
  • 6POLI R, KENNEDY J, BLACKWELL T. Particle swarm optimization: an overview[ J ].Swarm Intelligence, 2007, 1 ( 1 ) : 33-57.
  • 7KENNEDY J, MENDES R. Population stnaeture and parti- cle swarm performance [ C ]//Proceedings of the IEEE Con- gress on Computation Intelligence. Honolulu, USA, 2002: 1671-1675.
  • 8MATSUSHITA H, NISHIO Y. Network-structured particle swarm optimizer with various topology and its behaviors [ J ]. Lecture Notes in Computer Science, 2009, 5629. 163-171.
  • 9ZHANG Chengong, YI Zhang. Scale-free fully informed particle swarm optimization algorithm[ J ]. Information Sci- ences, 2011, 181(20): 4550-4568.
  • 10Kennedy J,Eberhart RC.Particle swarm optimization. Proceedings of the IEEE International Conference on Neural Networks . 1995

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部