摘要
针对空间数据集的特性,提出一种基于空间局部偏离因子(SLDF)的离群点检测算法。利用SLDF度量空间点对象的离群程度,计算空间数据集中点对象的SLDF值并对其进行排序,将取值较大的前M个点对象作为空间离群点。实验结果表明,该算法能较好地检测空间局部离群点,其有效性与准确性均优于SLZ算法,适用于高维大数据集的空间离群点检测。
According to the characteristics of spatial data sets, this paper proposes an outlier detection algorithm based on the Space Local Deviation Factor(SLDF). The algorithm uses SLDF to measure the deviate degree of space points object. It calculates all the points' SLDE sorts by their values, and uses the top M as the space outlier. Experimental result shows that the algorithm can well detect space outlier and be more applicable to the high dimensional and large data sets, its validity and accuracy of the algorithm are superior to that of SLZ algorithm.
出处
《计算机工程》
CAS
CSCD
北大核心
2011年第14期282-284,共3页
Computer Engineering
基金
国家自然科学基金资助项目(60773013)
关键词
属性权向量
空间离群点
空间对象距离
空间局部偏离因子
attribute weighted vector
space outlier
space object distance
Space Local Deviation Factor(SLDF)