期刊文献+

具双时滞的Nicholson果蝇系统的动力学性质 被引量:1

Dynamical analysis in Nicholson blowflies system with two delays
下载PDF
导出
摘要 为更好地维护生态系统和谐与稳定,研究了具双时滞的Nicholson果蝇动力系统的稳定性.对系统在正平衡点附近的稳定性,局部Hopf分支的存在性,发生条件、Hopf分支的方向,分支周期解的稳定性以及分支随参数变化其周期解的周期变化进行了讨论.然后通过数值模拟有力地支撑了前面分析得到的理论结果,并且得到在正平衡点附近Hopf分支的全局存在性.用分支理论解释了生态系统得以循环不息的原因. In order to maintain the harmony and stability of ecosystems,in this paper,the stability of Nicholson's blowflies model with time delay was investigated.The distribution of the characteristic roots,the stability of the equilibrium,the existence of Hopf bifurcation and its conditions were discussed.Meanwhile,some simulations were carried out,which supported the theoretical results obtained previously and the global existence of Hopf bifurcation near the positive equilibrium point was got.At last,the reasons of circulating ecosystems were explained by the bifurcation theory.
作者 张向华
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2011年第6期70-75,共6页 Journal of Harbin Institute of Technology
基金 黑龙江省自然科学基金资助项目(A201015)
关键词 平衡点 稳定性 周期解 HOPF分支 equilibrium point stability periodic solutions Hopf bifurcation
  • 相关文献

参考文献10

  • 1GURNEY M S, BLYTHE S P, NISBEE R M. Nicholson' s blowflies revisited [ J ]. Nature, 1980, 287 : 17-21.
  • 2KULENOVI M R S, LADAS G, SFICAS Y G. Global attractivity in Nicholson' s blowflies [ J ]. Appl Anal, 1992, 43:109-124.
  • 3WENG P, LIANG M. Existence and global attractivity of periodic solution of a model in population dynamics [J]. Acta Math Appl Sinica (English Ser), 1996 (12) :427 -434.
  • 4KOCIC V L J, LADAS G. Oscillation and global attractivity in a discrete model of Nicholson' s blowflies [ J ].Appl Anal, 1990, 38:21 -31.
  • 5BEREZANSKY L, BRAVERMAN E, IDELS L. Nicholson' s blowflies differential equations revisited : main resuits and open problems [ J ]. Applied Mathematical Modelling, 2010, 34 : 1405-1417.
  • 6WU J. Theory and applications of partial functional differential equations [M]. Applied Mathematical Sciences 119. New York: Springer, 1996:65-70.
  • 7HALE J. Theory to functional differential equations [ M ]. New York : Springer, 1977:20-180.
  • 8RUAN S, WEI J. On the zeros of transcendental functions with applications to stability of delay differential equations [ J ]. Dynam Cont Discr Impul Sys Series A: Math Anal, 2003, 10 : 863-874.
  • 9WEI J, LI Y. Hopf bifurcation analysis in a delayed Nicholson blowflies equation [ J ]. Nonlinear Analysis, 2005, 60:1357-1367.
  • 10HASSARD B, KAZARINOFF N, WAN Y H. Theory and application of Hopf bifurcation [ M ]. Cambridge : Cambridge University Press, 1981:2-310.

同被引文献10

  • 1李冬松,王秋宝,刘明珠.一类延迟微分方程的数值霍普夫分支分析[J].黑龙江大学自然科学学报,2007,24(1):19-23. 被引量:2
  • 2KULENOVI M R S, LADAS G, SFICAS Y G. Global attraetivity in Nicholson' s blowflies[ J]. Applicable Analysis, 1992, 43:109 -124.
  • 3KOCIC V L J, LADAS G. Oscillation and global attraetivity in a discrete model of Nieholson' s blowflies[ J]. Applicable Analysis, 1990, 38 : 21 -31.
  • 4WEI Jun-jie, LI M Y. Hopf bifurcation analysis in a delayed Nicholson blowflies equation[ J]. Nonlinear Analysis, 2005, 60:1357 - 1367.
  • 5BEREZANSKY L, BRAVERMAN E, IDELS L. Nicholson' s blowflies differential equations revisited : main results and open problems [ J ]. Ap- plied Mathematical Modelling, 2010, 34:1405 -1417.
  • 6WANG Qiu-bao, LI Dong-song, LIU Ming-zhu. Numerical Hopf bifurcation of Runge-Kutta methods for a class of delay differential equations [ J ] Chaos, Solitons & Fractals, 2009, 42 (5) : 3087 -3099.
  • 7ZHANG Chun-rui, ZHENG Bao-dong. Stability and bifurcation of a two-dimension discreten neural network model with multi-delays[ J ]. Chaos Solitons & Fractals, 2007, 31 (5) : 1232 -1242.
  • 8HALE J K, VERDYN S M. Introduction to functional differential equations[ M]. New York: Springer Verlag, 1993.
  • 9IOOSS G. Bifureation of maps and applieations[ M ]. New York: North Holland Publishing Company, 1979:229 -232.
  • 10魏新,张敬,周莉.一类时滞Nicholson果蝇系统数值Hopf分支分析[J].齐齐哈尔大学学报(自然科学版),2012,28(3):90-93. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部