期刊文献+

扇形凹穴型微通道液体流动与传热特性的数值模拟 被引量:4

Numerical simulation of fluid flow and heat transfer in a microchannel with fan-shaped reentrant cavities
下载PDF
导出
摘要 为得到扇形凹穴型微通道内单相液体流动与传热特性,以等截面矩形微通道为参照,利用FLUENT计算流体力学模拟与分析软件进行三维数值模拟,采用有限体积法离散模型和SIMPLEX算法进行层流计算,讨论扇形凹穴型微通道热沉在不同体积流量不同热流密度条件下流体流动特性和传热特性.模拟结果表明:较大Re条件下扇形凹穴型微通道具有很好的流体流动特性和传热特性,其流动与传热机理可归结为边界层的破坏、喷射节流效应及层流滞止区的相互作用. To examine the fluid flow and heat transfer characteristics in a microchannel with fan-shaped reentrant cavities,the numerical investigations were conducted,and the results were compared with the conventional rectangular microchannel data.The SIMPLEX method was used for the computation.The effects of volumetric flow rate,heat flux on the pressure drop and thermal resistance were investigated in detail.The numerical simulation results indicate that a microchannel with fan-shaped reentrant cavities can improve heat transfer performance with an acceptable pressure drop when the Reynolds numbers are larger,and the fluid flow and heat transfer mechanism can be attributed to the interaction of the redeveloping of hydraulic and thermal boundary layers,the effect of jet and throttling and the stagnation zone of laminar flow.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2011年第6期122-126,共5页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(50876003) 北京市自然科学基金资助项目(3092009) 北京市属高等学校人才强教计划项目(PHR200906104)
关键词 扇形凹穴型 微通道 数值模拟 fan-shaped reentrant cavities microchannel numerical simulation
  • 相关文献

参考文献14

  • 1TUCKERMAN D B, PEASE R F. High performance heat sink for VLSI [ J ]. IEEE Electron Dev Lett, 1981, 2:126-129.
  • 2CELATA G P, CUMO M. Experimental investigation of hydraulic and single phase heat transfer in 0. 130mm capillary tube [ J]. Microscale Thermophys, 2002, 6 : 85-97.
  • 3STEINKE M E, KANDLIKAR S G. Single-phase liquid friction factors in microchannels[ J]. International Journal of Thermal Sciences, 2006, 45:1073 -1083.
  • 4XIE X L, LIU Z J. Numerical study of laminar heat transfer and pressure drop characteristics in a watercooled minichannel heat sink[J]. Applied Thermal Engineering, 2009, 29 : 64-74.
  • 5HARPOLE G, ENINGER J E. Microchannel heat exchanger optimization [ J ]. Proceedings IEEE Semiconductor Thermal, 1991, 2:59 -63.
  • 6KNIGHE R W, HALL D J. Heat sink optimization with application to microchannels [ J ]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1992, 15(5): 832-842.
  • 7KANDLOKAR S G, UPADHYE H R. Extending the heat flux limit with enhanced microchannels in direct single-phase cooling of computer chips [ J ]. IEEE Sem iconductor Thermal, 2005, 21 : 15-17.
  • 8KANDLIKAR S G, JOSHI S. Effect of surface rough ness on heat transfer and fluid flow characteristics at low Reynolds numbers in small diameter tubes [ J ]. Heat Transfer Engineering, 2003, 24 (3) : 4-16.
  • 9GIULIO C, PAOLA D. Three-dimensional roughness effect on microchannel heat transfer and pressure drop [ J]. International Journal of Heat and Mass Transfer, 2007, 50 : 5249-5259.
  • 10PENG X F, PETERSON G P. Convective heat transfer and flow friction for water flow in micro-channel struc tures [J]. Int J Heat and Mass Transfer, 1996, 39: 2599-2608.

同被引文献23

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部