期刊文献+

一种用于复杂目标感知的视觉注意模型 被引量:1

Visual Attention Model for Complex Target Perception
下载PDF
导出
摘要 针对自然场景图像中复杂结构目标的快速定位问题,提出一种新的视觉注意模型。对目标进行学习提取显著性图斑,将图斑的特征信息、异质图斑之间的相对位置关系引入视觉注意过程,采用基于图匹配的图斑搜索策略合并与目标特征相似的异质图斑,从而获得注意焦点。与自底向上的视觉注意模型进行实验对比,结果表明该模型能引入复杂结构目标的特征信息和结构信息,降低无效关注次数,提高视觉注意的效率。 A new visual attention model used for rapid perception of complex targets in natural scene is proposed.In the learning process,the model extracts saliency blobs from a given target’s image.Then during the process of attention on a scene image,it adopts a blob searching and merging strategy based on graph matching to guide visual focus to where it looks like the target.The blob searching and merging strategy uses features of learned heterogeneous blobs and their spatial relative positions,which are all recorded during the previous target learning process.Compared with typical bottom-up visual attention model,experiments show that the new method could efficiently introduce feature and structure information of complex target into the process of attention,reduce useless visual focus shifts,and improve the performance of visual attention.The model could be used to locate complex structural targets in natural scene images
出处 《计算机工程》 CAS CSCD 北大核心 2011年第13期17-19,25,共4页 Computer Engineering
基金 国家"863"计划基金资助项目(2007AA12Z166)
关键词 视觉注意模型 视觉搜索 显著性图斑 目标感知 图像匹配 visual attention model visual search saliency blob target perception image matching
  • 相关文献

参考文献6

  • 1Itti L, Koch C, Niebur E. A Model of Saliency-based Visual Attention for Rapid Scene Analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.
  • 2Eriksen C W, St. James J D. Visual Attention Within and Around the Field of Focal Attention: A Zoom Lens Model[J]. Perception and Psychophysics, 1986, 40(4): 225-240.
  • 3Walther D, Koch C. Modeling Attention to Salient Proto-objects[J]. Neural Networks, 2006, 19(9): 1395-1407.
  • 4Navalpakkam V, Itti L. Modeling the Influence of Task onAttention[J]. Vision Research, 2005, 45(2): 205-231.
  • 5肖洁,蔡超,丁明跃.一种图斑特征引导的感知分组视觉注意模型[J].航空学报,2010,31(11):2266-2274. 被引量:3
  • 6Kendall M, Gibbons J. Rank Correlation Methods[M]. London, UK: Charles Griffin, 1970.

二级参考文献18

  • 1Itti L, Koch C. Computational modelling of visual attention[J]. Nature Reviews Neuroscienee, 2001, 2(3): 194- 203.
  • 2Treisman A M, Gelade G. A feature integration theory of attention[J]. Cognitive Psychology, 1980, 12 (1) :97- 136.
  • 3Wolfe J M. Guided search 2.0= A revised model of visual search[J].. Psychonomie Bulletin & Review, 1994, 1(2): 202 -238.
  • 4Eriksen C W, St James J D. Visual attention within and around the field of focal attention: A zoom lens model[J].Perception b-Psychophysics, 1986, 40(4): 225-240.
  • 5Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry[J].Human Neurobiology, 1985, 4(4): 219- 227.
  • 6Olshausen B A, Anderson C H, Van Essen D C. A neurobiological model of visual attention and invariant pattern recognition based on dynamic rooting of information[J].Journal of Neuroscience, 1993, 13(11): 4700-4719.
  • 7Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998 20(11) : 1254-1259.
  • 8Kadir T, Brady M. Saliency, scale and image description [J].International Journal of Computer Vision, 2001, 45 (2): 83-105.
  • 9Hou X, Zhang L. Saliency detection: a spectral residual approach[C]//Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern. 2007: 1-8.
  • 10Walther D, Koch C. Modeling attention to salient protoobjects[J].Neural Networks, 2006, 19(9): 1395 -1407.

共引文献2

同被引文献21

  • 1BORJI A, ITTI L. State-of-the-Art in visual attention modeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1):185-207.
  • 2ITTI L, KOCH C, NIEBUR E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11):1254-1259.
  • 3HAREL J, KOCH C, PERONA P. Graph-based visual saliency[C]//NIPS 2006:Proceedings of the 2006 Advances in Neural Information Processing Systems. Cambridge:MIT Press, 2006:545-552.
  • 4KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[EB/OL].[2015-10-10]. https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf.
  • 5BORJI A, ITTI L. Exploiting local and global patch rarities for saliency detection[C]//CVPR 2012:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2012:478-485.
  • 6VIG E, DORR M, COX D. Large-scale optimization of hierarchical features for saliency prediction in natural images[C]//CVPR 2014:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2014:2798-2805.
  • 7BRUCE N, TSOTSOS J. Saliency based on information maximization[EB/OL].[2015-10-10]. https://papers.nips.cc/paper/2830-saliency-based-on-information-maximization.pdf.
  • 8LI J, LEVINE M, AN X, et al. Visual saliency based on scale-space analysis in the frequency domain[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(4):996-1010.
  • 9BORJI A, SIHITE D, ITTI L, et al. Probabilistic learning of task-specific visual attention[C]//CVPR 2012:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2012:470-477.
  • 10ZHANG L, TONG M, MARKS, T, et al. SUN:a Bayesian framework for saliency using natural statistics[J]. Journal of Vision, 2008, 8(7):Artile No. 32.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部