期刊文献+

基于Bloom过滤器的精确位图索引

Precise Bitmap Index Based on Bloom Filter
下载PDF
导出
摘要 针对基于Bloom过滤器的位图索引方法查询结果不精确的问题,提出一种精确位图索引算法——FPT-Index。该算法采用Bloom过滤器对基本位图索引进行压缩,同时引入假阳表,对查询结果进行筛选,从而达到精确查询的目的。通过理论分析得出,在给定关键词出现频率的前提条件下,可计算出最小压缩率以及所需哈希函数的个数。实验结果表明,FPT-Index相较于WAH方法在压缩率和查询效率两方面都有较好的表现。 A precise bitmap index named FPT-Index is proposed to solve the problem that the query results are not precise m approximate oltmap index base on bloom filter. FPT-Index uses bloom filter to compress the basic bitmap index and introduces false positive table to screen the query results. The query results from FPT-Index are precise. Through theoretical analysis, the minimum of compression ratio and the corresponding number of hash functions can be worked out when the keyword frequency is confirmed. Experimental results show that FPT-Index does better in compression ratio and search performance than WAH.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第13期272-274,278,共4页 Computer Engineering
关键词 位图索引 BLOOM过滤器 假阳率 假阳表 压缩率 查询效率 bitmap index Bloom Filter(BF) false positive probability false positive table compression ratio search efficiency
  • 相关文献

参考文献9

  • 1张卫丰,徐宝文,周晓宇,许蕾,李东.Web搜索引擎综述[J].计算机科学,2001,28(9):24-28. 被引量:30
  • 2Anh V, Moffat A. Compressed Inverted Files with ReducedDecoding Overheads[C]//Proc. of the 21st Annual ACM SIGIRConference on Research and Development. New York, USA: ACMPress, 1998.
  • 3O'Neil R Model 204 Architecture and Performance[C]//Proc. ofthe 2nd International Workshop on High Performance Transaction Systems. [S. 1.]: Springer-Verlag, 1987: 39-59.
  • 4程鹏.位图索引技术及其研究综述[J].科技信息,2010(26):134-135. 被引量:2
  • 5Wu Kesheng, Otoo E, Shoshani A. Optimizing Bitmap Indiceswith Efficient Compression[J]. ACM Trans. on Database Systems, 2006, 31(1): 1-38.
  • 6王琢,姜学军.不精确位图索引中Bloom filter空间预估的一种方法[J].沈阳理工大学学报,2009,28(3):23-26. 被引量:1
  • 7袁志坚,陈颖文,缪嘉嘉,贾焰,杨树强.典型Bloom过滤器的研究及其数据流应用[J].计算机工程,2009,35(7):5-7. 被引量:7
  • 8Apaydin T, Canahuate G, Ferhatosmanoglu H, et al. Approximate Encoding for Direct Access and Query Processing overCompressed Bitmaps[C]//Proc. of the 32nd International Conference on Very Large Data Bases. Seoul, Korea: [s. n.], 2006.
  • 9Mitzenmacher M. Compressed Bloom Filters[J]. IEEE/ACM Trans. on Networking Member, 2002, 10(5): 589-603.

二级参考文献36

  • 1Bloom B H. Space/Time Trade-otis in Hash Coding with Allowable Errors[J]. Communication of the ACM, 1970, 13(7): 422-426.
  • 2Fan Li, Cao Pei, Almeida J, et al. Summary Cache: A Scalable Wide-area Web Cache Sharing Protocol[J]. IEEE/ACM Transactions on Networking, 2000, 8(3): 281-293.
  • 3Cohen S, Matias Y. Spectral Bloom Filters[C]//Proceedings of SIGMOD'03. San Diego, California, USA: ACM Press, 2003: 241-252.
  • 4Aguilar-Saborit J, Muntes-Mulero V, Trancoso E et al. Dynamic Count Filters[J]. SIGMOD Record, 2006, 35(1): 26-32.
  • 5Broder A, Mitzenmacher M. Network Applications of Bloom Filters: A Survey[J]. Intemet Mathematics, 2004, 1 (4): 485-509.
  • 6Fan Deng, Rafiei D. Approximately Detecting Duplicates for Streaming Data Using Stable Bloom Filters[C]//Proceedings of SIGMOD'06. Chicago, USA: ACM Press. 2006: 25-36.
  • 7O'Neil P. Model 204 architecture and performance[C]. In Proceedings of the 2nd international Workshop on High Performance Transaction Systems, Asilomar, CA, USA, 1987.9. 40-59.
  • 8Wu K, Otoo E, Shoshani A. Optimizing bitmap indices with efficient compression[J]. ACM Transactions on Database Systems, 2006, 31(1), 1-38.
  • 9Chan C, Ioannidis Y. Bitmap index design and evaluation[ C]. SIGMOD. ACM Press, New York, NY, 1998, 355-366.
  • 10Chan C, Ioannidis Y. An efficient bitmap encoding scheme for selection queries[ C]. SIGMOD, ACM Press, New York, NY, 1999. 215-226.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部